iGly-IDN: Identifying Lysine Glycation Sites in Proteins Based on Improved DenseNet.

IF 1.4 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Journal of Computational Biology Pub Date : 2024-02-01 Epub Date: 2023-11-28 DOI:10.1089/cmb.2023.0112
Jianhua Jia, Genqiang Wu, Meifang Li
{"title":"iGly-IDN: Identifying Lysine Glycation Sites in Proteins Based on Improved DenseNet.","authors":"Jianhua Jia, Genqiang Wu, Meifang Li","doi":"10.1089/cmb.2023.0112","DOIUrl":null,"url":null,"abstract":"<p><p>Lysine glycation is one of the most significant protein post-translational modifications, which changes the properties of the proteins and causes them to be dysfunctional. Accurately identifying glycation sites helps to understand the biological function and potential mechanism of glycation in disease treatments. Nonetheless, the experimental methods are ordinarily inefficient and costly, so effective computational methods need to be developed. In this study, we proposed the new model called iGly-IDN based on the improved densely connected convolutional networks (DenseNet). First, one hot encoding was adopted to obtain the original feature maps. Afterward, the improved DenseNet was adopted to capture feature information with the importance degrees during the feature learning. According to the experimental results, Acc reaches 66%, and Mathews correlation coefficient reaches 0.33 on the independent testing data set, which indicates that the iGly-IDN can provide more effective glycation site identification than the current predictors.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":"161-174"},"PeriodicalIF":1.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2023.0112","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Lysine glycation is one of the most significant protein post-translational modifications, which changes the properties of the proteins and causes them to be dysfunctional. Accurately identifying glycation sites helps to understand the biological function and potential mechanism of glycation in disease treatments. Nonetheless, the experimental methods are ordinarily inefficient and costly, so effective computational methods need to be developed. In this study, we proposed the new model called iGly-IDN based on the improved densely connected convolutional networks (DenseNet). First, one hot encoding was adopted to obtain the original feature maps. Afterward, the improved DenseNet was adopted to capture feature information with the importance degrees during the feature learning. According to the experimental results, Acc reaches 66%, and Mathews correlation coefficient reaches 0.33 on the independent testing data set, which indicates that the iGly-IDN can provide more effective glycation site identification than the current predictors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
iGly-IDN:基于改进DenseNet的蛋白质中赖氨酸糖基化位点鉴定。
赖氨酸糖基化是蛋白质翻译后最重要的修饰之一,它改变了蛋白质的性质并导致它们功能失调。准确识别糖基化位点有助于了解糖基化在疾病治疗中的生物学功能和潜在机制。然而,实验方法通常效率低且成本高,因此需要开发有效的计算方法。在本研究中,我们提出了基于改进的密集连接卷积网络(DenseNet)的iGly-IDN新模型。首先,采用一种热编码方法获得原始特征映射;然后,在特征学习过程中,采用改进的DenseNet算法捕获具有重要度的特征信息。实验结果显示,在独立测试数据集上,Acc达到66%,Mathews相关系数达到0.33,表明iGly-IDN比现有的预测因子能够提供更有效的糖基化位点识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Biology
Journal of Computational Biology 生物-计算机:跨学科应用
CiteScore
3.60
自引率
5.90%
发文量
113
审稿时长
6-12 weeks
期刊介绍: Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics. Journal of Computational Biology coverage includes: -Genomics -Mathematical modeling and simulation -Distributed and parallel biological computing -Designing biological databases -Pattern matching and pattern detection -Linking disparate databases and data -New tools for computational biology -Relational and object-oriented database technology for bioinformatics -Biological expert system design and use -Reasoning by analogy, hypothesis formation, and testing by machine -Management of biological databases
期刊最新文献
Adaptive Arithmetic Coding-Based Encoding Method Toward High-Density DNA Storage. The Statistics of Parametrized Syncmers in a Simple Mutation Process Without Spurious Matches. A Hybrid GNN Approach for Improved Molecular Property Prediction. From Policy to Prediction: Assessing Forecasting Accuracy in an Integrated Framework with Machine Learning and Disease Models. Network-Constrained Eigen-Single-Cell Profile Estimation for Uncovering Crucial Immunogene Regulatory Systems in Human Bone Marrow.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1