Brenda Ivette García-Maya, Yehtli Morales-Huerta, Raúl Salgado-García
{"title":"Disease Spread Model in Structurally Complex Spaces: An Open Markov Chain Approach.","authors":"Brenda Ivette García-Maya, Yehtli Morales-Huerta, Raúl Salgado-García","doi":"10.1089/cmb.2024.0630","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the dynamical behavior of infectious disease propagation within enclosed spaces is crucial for effectively establishing control measures. In this article, we present a modeling approach to analyze the dynamics of individuals in enclosed spaces, where such spaces are comprised of different chambers. Our focus is on capturing the movement of individuals and their infection status using an open Markov chain framework. Unlike ordinary Markov chains, an open Markov chain accounts for individuals entering and leaving the system. We categorize individuals within the system into three different groups: susceptible, carrier, and infected. A discrete-time process is employed to model the behavior of individuals throughout the system. To quantify the risk of infection, we derive a probability function that takes into account the total number of individuals inside the system and the distribution among the different groups. Furthermore, we calculate mathematical expressions for the average number of susceptible, carrier, and infected individuals at each time step. Additionally, we determine mathematical expressions for the mean number and stationary mean populations of these groups. To validate our modeling approach, we compare the theoretical and numerical models proposed in this work.</p>","PeriodicalId":15526,"journal":{"name":"Journal of Computational Biology","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/cmb.2024.0630","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the dynamical behavior of infectious disease propagation within enclosed spaces is crucial for effectively establishing control measures. In this article, we present a modeling approach to analyze the dynamics of individuals in enclosed spaces, where such spaces are comprised of different chambers. Our focus is on capturing the movement of individuals and their infection status using an open Markov chain framework. Unlike ordinary Markov chains, an open Markov chain accounts for individuals entering and leaving the system. We categorize individuals within the system into three different groups: susceptible, carrier, and infected. A discrete-time process is employed to model the behavior of individuals throughout the system. To quantify the risk of infection, we derive a probability function that takes into account the total number of individuals inside the system and the distribution among the different groups. Furthermore, we calculate mathematical expressions for the average number of susceptible, carrier, and infected individuals at each time step. Additionally, we determine mathematical expressions for the mean number and stationary mean populations of these groups. To validate our modeling approach, we compare the theoretical and numerical models proposed in this work.
期刊介绍:
Journal of Computational Biology is the leading peer-reviewed journal in computational biology and bioinformatics, publishing in-depth statistical, mathematical, and computational analysis of methods, as well as their practical impact. Available only online, this is an essential journal for scientists and students who want to keep abreast of developments in bioinformatics.
Journal of Computational Biology coverage includes:
-Genomics
-Mathematical modeling and simulation
-Distributed and parallel biological computing
-Designing biological databases
-Pattern matching and pattern detection
-Linking disparate databases and data
-New tools for computational biology
-Relational and object-oriented database technology for bioinformatics
-Biological expert system design and use
-Reasoning by analogy, hypothesis formation, and testing by machine
-Management of biological databases