Artur Benisek, Edgar Dachs, Michael A. Carpenter, Bastian Joachim-Mrosko, Noreen M. Vielreicher, Manfred Wildner
{"title":"Vibrational entropy of disordering in omphacite","authors":"Artur Benisek, Edgar Dachs, Michael A. Carpenter, Bastian Joachim-Mrosko, Noreen M. Vielreicher, Manfred Wildner","doi":"10.1007/s00269-023-01260-7","DOIUrl":null,"url":null,"abstract":"<div><p>The cations of an ordered omphacite from the Tauern window were gradually disordered in piston cylinder experiments at temperatures between 850 and 1150 °C. The samples were examined by X-ray powder diffraction and then investigated using low-temperature calorimetry and IR spectroscopy. The low-temperature heat capacity data were used to obtain the vibrational entropies, and the line broadening of the IR spectra served as a tool to investigate the disordering enthalpy. These data were then used to calculate the configurational entropy as a function of temperature. The vibrational entropy does not change during the cation ordering phase transition from space group <i>C2/c</i> to <i>P2/n</i> at 865 °C but increases with a further temperature increase due to the reduction of short-range order.</p></div>","PeriodicalId":20132,"journal":{"name":"Physics and Chemistry of Minerals","volume":"50 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00269-023-01260-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Minerals","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00269-023-01260-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The cations of an ordered omphacite from the Tauern window were gradually disordered in piston cylinder experiments at temperatures between 850 and 1150 °C. The samples were examined by X-ray powder diffraction and then investigated using low-temperature calorimetry and IR spectroscopy. The low-temperature heat capacity data were used to obtain the vibrational entropies, and the line broadening of the IR spectra served as a tool to investigate the disordering enthalpy. These data were then used to calculate the configurational entropy as a function of temperature. The vibrational entropy does not change during the cation ordering phase transition from space group C2/c to P2/n at 865 °C but increases with a further temperature increase due to the reduction of short-range order.
期刊介绍:
Physics and Chemistry of Minerals is an international journal devoted to publishing articles and short communications of physical or chemical studies on minerals or solids related to minerals. The aim of the journal is to support competent interdisciplinary work in mineralogy and physics or chemistry. Particular emphasis is placed on applications of modern techniques or new theories and models to interpret atomic structures and physical or chemical properties of minerals. Some subjects of interest are:
-Relationships between atomic structure and crystalline state (structures of various states, crystal energies, crystal growth, thermodynamic studies, phase transformations, solid solution, exsolution phenomena, etc.)
-General solid state spectroscopy (ultraviolet, visible, infrared, Raman, ESCA, luminescence, X-ray, electron paramagnetic resonance, nuclear magnetic resonance, gamma ray resonance, etc.)
-Experimental and theoretical analysis of chemical bonding in minerals (application of crystal field, molecular orbital, band theories, etc.)
-Physical properties (magnetic, mechanical, electric, optical, thermodynamic, etc.)
-Relations between thermal expansion, compressibility, elastic constants, and fundamental properties of atomic structure, particularly as applied to geophysical problems
-Electron microscopy in support of physical and chemical studies
-Computational methods in the study of the structure and properties of minerals
-Mineral surfaces (experimental methods, structure and properties)