Dual surface/bulk engineering of Nb2O5 for high-rate sodium storage

Electron Pub Date : 2023-11-23 DOI:10.1002/elt2.15
Yingjun Jiang, Xianluo Hu
{"title":"Dual surface/bulk engineering of Nb2O5 for high-rate sodium storage","authors":"Yingjun Jiang,&nbsp;Xianluo Hu","doi":"10.1002/elt2.15","DOIUrl":null,"url":null,"abstract":"<p>Orthorhombic Nb<sub>2</sub>O<sub>5</sub> is a highly promising fast-charging anode material for sodium-ion capacitors. However, its poor intrinsic electronic/ionic conductivity limits its performance. Here, we developed a one-step heat treatment method to create an N-doped carbon coating on the outside and S-doped Nb<sub>2</sub>O<sub>5</sub> on the inside (CN-SCN). Ionic liquids are used as the source of C/N/S, which synergistically enhance the surface and bulk electronic/ionic conductivity. The N-doped carbon coating on the surface exhibits excellent electronic conductivity and a low ion-diffusion barrier, thanks to the high nitrogen ratio and extremely low content (&lt;2 wt%). Auger electron spectroscopy analysis confirms that S atoms detach from the carbon chain of the ionic liquids and enter the bulk Nb<sub>2</sub>O<sub>5</sub>, resulting in S-doped Nb<sub>2</sub>O<sub>5</sub>, significantly facilitating reaction kinetics. The CN-SCN electrodes exhibit outstanding rate capability, achieving a capacity of up to 94 mAh g<sup>−1</sup> even at a high current rate of 50 C. When paired with activated carbon as the positive electrode, the sodium-ion capacitor with the CN-SCN anode exhibits a high-energy density of up to 59 Wh kg<sup>−1</sup> and a long cycle life with 73% capacity retention after 10,000 cycles. This work opens up possibilities for low-cost and large-scale production of high-rate Nb<sub>2</sub>O<sub>5</sub> for sodium-storage applications.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":"1 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.15","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elt2.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Orthorhombic Nb2O5 is a highly promising fast-charging anode material for sodium-ion capacitors. However, its poor intrinsic electronic/ionic conductivity limits its performance. Here, we developed a one-step heat treatment method to create an N-doped carbon coating on the outside and S-doped Nb2O5 on the inside (CN-SCN). Ionic liquids are used as the source of C/N/S, which synergistically enhance the surface and bulk electronic/ionic conductivity. The N-doped carbon coating on the surface exhibits excellent electronic conductivity and a low ion-diffusion barrier, thanks to the high nitrogen ratio and extremely low content (<2 wt%). Auger electron spectroscopy analysis confirms that S atoms detach from the carbon chain of the ionic liquids and enter the bulk Nb2O5, resulting in S-doped Nb2O5, significantly facilitating reaction kinetics. The CN-SCN electrodes exhibit outstanding rate capability, achieving a capacity of up to 94 mAh g−1 even at a high current rate of 50 C. When paired with activated carbon as the positive electrode, the sodium-ion capacitor with the CN-SCN anode exhibits a high-energy density of up to 59 Wh kg−1 and a long cycle life with 73% capacity retention after 10,000 cycles. This work opens up possibilities for low-cost and large-scale production of high-rate Nb2O5 for sodium-storage applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高速储钠用Nb2O5双表面/体工程
正晶Nb2O5是一种极具发展前景的钠离子电容器快速充电负极材料。然而,其较差的本征电子/离子电导率限制了其性能。在这里,我们开发了一种一步热处理方法,在外面制备了n掺杂碳涂层,在里面制备了s掺杂Nb2O5涂层(CN-SCN)。离子液体作为C/N/S的来源,协同提高表面和体电子/离子电导率。由于高氮比和极低的氮含量(<2 wt%),表面的n掺杂碳涂层具有优异的电子导电性和低离子扩散屏障。俄歇电子能谱分析证实,S原子从离子液体的碳链上脱离,进入本体Nb2O5,导致S掺杂Nb2O5,显著促进了反应动力学。CN-SCN电极表现出出色的倍率能力,即使在50℃的高电流下也能达到94 mAh g - 1的容量。当与活性炭作为正极配对时,CN-SCN阳极的钠离子电容器表现出高达59 Wh kg - 1的高能量密度和长循环寿命,在10,000次循环后容量保持率为73%。这项工作为低成本和大规模生产用于钠存储应用的高速率Nb2O5开辟了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Cover Image, Volume 2, Number 4, November 2024 Cover Image, Volume 2, Number 4, November 2024 Design of long-wavelength infrared InAs/InAsSb type-II superlattice avalanche photodetector with stepped grading layer Recent progress on heteroepitaxial growth of single crystal diamond films
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1