首页 > 最新文献

Electron最新文献

英文 中文
Cover Image, Volume 2, Number 3, August 2024 封面图片,第 2 卷第 3 号,2024 年 8 月
Pub Date : 2024-08-30 DOI: 10.1002/elt2.66
Hui Xie, Jianyou Yu, Yuchen Fang, Zhijun Wang, Shihe Yang, Zheng Xing

Photocathodic protection has emerged as an eco-friendly and energy-saving technology for alleviating the corrosion of underwater metallic infrastructures. In a photocathodic protection system built from single-domain ferroelectric PbTiO3 nanoplates, the aligned depolarization fields of individual nanoplates provide a “highway” for the photogenerated charges so that the electrons are guided to unidirectionally flow to the protected metal. The cover image (DOI: 10.1002/elt2.51) depicts the schematic diagram of the well-aligned depolarization fields of the PbTiO3 nanoplates, the induced directional transport “highway” of electrons and holes, and the photogenerated electrons traveling to metallic structures (such as bridges and ships) for anti-corrosion purposes.

光电阴极保护已成为减轻水下金属基础设施腐蚀的环保节能技术。在由单域铁电 PbTiO3 纳米板构建的光电阴极保护系统中,单个纳米板排列整齐的去极化场为光生电荷提供了一条 "高速公路",从而引导电子单向流向受保护的金属。封面图片(DOI: 10.1002/elt2.51)描述了 PbTiO3 纳米板排列整齐的去极化场、电子和空穴的诱导定向传输 "高速公路 "以及光生电子流向金属结构(如桥梁和船舶)以达到防腐蚀目的的示意图。
{"title":"Cover Image, Volume 2, Number 3, August 2024","authors":"Hui Xie,&nbsp;Jianyou Yu,&nbsp;Yuchen Fang,&nbsp;Zhijun Wang,&nbsp;Shihe Yang,&nbsp;Zheng Xing","doi":"10.1002/elt2.66","DOIUrl":"https://doi.org/10.1002/elt2.66","url":null,"abstract":"<p>Photocathodic protection has emerged as an eco-friendly and energy-saving technology for alleviating the corrosion of underwater metallic infrastructures. In a photocathodic protection system built from single-domain ferroelectric PbTiO<sub>3</sub> nanoplates, the aligned depolarization fields of individual nanoplates provide a “highway” for the photogenerated charges so that the electrons are guided to unidirectionally flow to the protected metal. The cover image (DOI: 10.1002/elt2.51) depicts the schematic diagram of the well-aligned depolarization fields of the PbTiO<sub>3</sub> nanoplates, the induced directional transport “highway” of electrons and holes, and the photogenerated electrons traveling to metallic structures (such as bridges and ships) for anti-corrosion purposes.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.66","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 2, Number 3, August 2024 封面图片,第 2 卷第 3 号,2024 年 8 月
Pub Date : 2024-08-30 DOI: 10.1002/elt2.68
Guo Huang, Yujin Huang, Asad Ali, Zhijie Chen, Pei Kang Shen, Bing-Jie Ni, Jinliang Zhu

Designing cost-effective electrocatalysts for hydrogen evolution reaction (HER) is of paramount importance. Leveraging the benefit of heterostructural materials, a mixed-phase cobalt phosphide (CoP-Co2P) has been synthesized through a simple phosphorization method (DOI: 10.1002/elt2.58). This heterostructure catalyst, with its metallic state, high electron density near the Fermi level, and excellent conductivity, displays outstanding activity and exceptional durability for HER in both alkaline and neutral environments. Moreover, it shows remarkable HER catalytic efficiency in alkaline seawater, highlighting its potential for practical applications in hydrogen production.

设计具有成本效益的氢进化反应(HER)电催化剂至关重要。利用异质结构材料的优势,我们通过简单的磷化方法合成了一种混合相磷化钴(CoP-Co2P)(DOI: 10.1002/elt2.58)。这种异质结构催化剂具有金属态、费米级附近的高电子密度和优异的导电性,在碱性和中性环境中都能显示出卓越的活性和出色的 HER 耐久性。此外,它还在碱性海水中显示出卓越的 HER 催化效率,凸显了其在制氢领域的实际应用潜力。
{"title":"Cover Image, Volume 2, Number 3, August 2024","authors":"Guo Huang,&nbsp;Yujin Huang,&nbsp;Asad Ali,&nbsp;Zhijie Chen,&nbsp;Pei Kang Shen,&nbsp;Bing-Jie Ni,&nbsp;Jinliang Zhu","doi":"10.1002/elt2.68","DOIUrl":"https://doi.org/10.1002/elt2.68","url":null,"abstract":"<p>Designing cost-effective electrocatalysts for hydrogen evolution reaction (HER) is of paramount importance. Leveraging the benefit of heterostructural materials, a mixed-phase cobalt phosphide (CoP-Co<sub>2</sub>P) has been synthesized through a simple phosphorization method (DOI: 10.1002/elt2.58). This heterostructure catalyst, with its metallic state, high electron density near the Fermi level, and excellent conductivity, displays outstanding activity and exceptional durability for HER in both alkaline and neutral environments. Moreover, it shows remarkable HER catalytic efficiency in alkaline seawater, highlighting its potential for practical applications in hydrogen production.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.68","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Image, Volume 2, Number 3, August 2024 封面图片,第 2 卷第 3 号,2024 年 8 月
Pub Date : 2024-08-30 DOI: 10.1002/elt2.67
Ziwei Zhao, Xiaowu Gao, Hansong Zhang, Keran Jiao, Pengfei Song, Yumin Zhang, Yongjie Wang, Jiaqi Zhu

Energy and survival materials are crucial for humanity. The cover image (DOI: 10.1002/elt2.45), set against the backdrop of the extraterrestrial environment, shows that diamond can effectively resist extreme environments and can convert CO2 into other useful carbon products through various modification methods in harsh environments. It demonstrates that diamond based catalysts are promising candidates for application in extreme environments.

能源和生存材料对人类至关重要。封面图片(DOI: 10.1002/elt2.45)以地外环境为背景,展示了金刚石能有效抵御极端环境,并能在恶劣环境中通过各种改性方法将二氧化碳转化为其他有用的碳产品。它表明,基于金刚石的催化剂有望在极端环境中得到应用。
{"title":"Cover Image, Volume 2, Number 3, August 2024","authors":"Ziwei Zhao,&nbsp;Xiaowu Gao,&nbsp;Hansong Zhang,&nbsp;Keran Jiao,&nbsp;Pengfei Song,&nbsp;Yumin Zhang,&nbsp;Yongjie Wang,&nbsp;Jiaqi Zhu","doi":"10.1002/elt2.67","DOIUrl":"https://doi.org/10.1002/elt2.67","url":null,"abstract":"<p>Energy and survival materials are crucial for humanity. The cover image (DOI: 10.1002/elt2.45), set against the backdrop of the extraterrestrial environment, shows that diamond can effectively resist extreme environments and can convert CO<sub>2</sub> into other useful carbon products through various modification methods in harsh environments. It demonstrates that diamond based catalysts are promising candidates for application in extreme environments.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.67","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-sensing piezoresistive aerospace composites based on CNTs and 2D material coated fabric sensors 基于 CNT 和二维材料涂层织物传感器的自感应压阻航空航天复合材料
Pub Date : 2024-08-23 DOI: 10.1002/elt2.61
Tayyab Khan, Rehan Umer

The ongoing fourth industrial revolution, also known as “Industry 4.0” is the driving force behind the digitalization of various manufacturing systems by incorporating smart autonomous systems, the Internet of Things (IoT), robotics, and artificial intelligence. In terms of aerospace composites, comprehensive research has been carried out in the past decade or so to manufacture smart and self-sensing fiber-reinforced polymer composites capable of monitoring their own health states. This review focuses on recent developments in smart, self-sensing fiber-reinforced composites incorporating nanomaterial-coated piezoresistive fabric sensors such as carbon nanotubes (CNTs), graphene, and MXene. A comprehensive overview of process monitoring involving the complete resin infusion cycle, such as compaction response, resin flow monitoring, pressure variations within the mold, process-induced defects monitoring, and cure/post-cure monitoring, has been provided. The post-manufacturing structuring health monitoring (SHM) of composites has also been discussed in detail. An overview of the associated challenges of these sensors, such as manufacturability, robustness, conductivity/piezoresistivity calibration, and the effect on structural integrity, is presented. Finally, future insights into the application of these sensors in the physical and cyber domains for smart factories of the future have also been discussed.

正在进行的第四次工业革命,又称 "工业 4.0",是通过整合智能自主系统、物联网(IoT)、机器人技术和人工智能实现各种制造系统数字化的驱动力。就航空航天复合材料而言,在过去的十多年中,已经开展了全面的研究,以制造能够监测自身健康状态的智能自感应纤维增强聚合物复合材料。本综述重点介绍了采用纳米材料涂层压阻织物传感器(如碳纳米管 (CNT)、石墨烯和 MXene)的智能自感应纤维增强复合材料的最新发展。全面概述了涉及整个树脂灌注周期的过程监控,如压实响应、树脂流监控、模具内压力变化、过程诱发缺陷监控以及固化/后固化监控。此外,还详细讨论了复合材料的制造后结构健康监测(SHM)。此外,还概述了这些传感器所面临的相关挑战,例如可制造性、稳健性、电导率/压阻率校准以及对结构完整性的影响。最后,还讨论了这些传感器在物理和网络领域应用于未来智能工厂的前景。
{"title":"Self-sensing piezoresistive aerospace composites based on CNTs and 2D material coated fabric sensors","authors":"Tayyab Khan,&nbsp;Rehan Umer","doi":"10.1002/elt2.61","DOIUrl":"https://doi.org/10.1002/elt2.61","url":null,"abstract":"<p>The ongoing fourth industrial revolution, also known as “Industry 4.0” is the driving force behind the digitalization of various manufacturing systems by incorporating smart autonomous systems, the Internet of Things (IoT), robotics, and artificial intelligence. In terms of aerospace composites, comprehensive research has been carried out in the past decade or so to manufacture smart and self-sensing fiber-reinforced polymer composites capable of monitoring their own health states. This review focuses on recent developments in smart, self-sensing fiber-reinforced composites incorporating nanomaterial-coated piezoresistive fabric sensors such as carbon nanotubes (CNTs), graphene, and MXene. A comprehensive overview of process monitoring involving the complete resin infusion cycle, such as compaction response, resin flow monitoring, pressure variations within the mold, process-induced defects monitoring, and cure/post-cure monitoring, has been provided. The post-manufacturing structuring health monitoring (SHM) of composites has also been discussed in detail. An overview of the associated challenges of these sensors, such as manufacturability, robustness, conductivity/piezoresistivity calibration, and the effect on structural integrity, is presented. Finally, future insights into the application of these sensors in the physical and cyber domains for smart factories of the future have also been discussed.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.61","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142100058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphology-controlled synthesis of multi-metal-based spinel oxide nanocatalysts and their performance for oxygen reduction 多金属基尖晶石氧化物纳米催化剂的形态控制合成及其氧气还原性能
Pub Date : 2024-08-22 DOI: 10.1002/elt2.62
Can Li, Jinfong Pan, Xiaobo Chen, Lihua Zhang, Anna Dennett, Prabhu Bharathan, Douglas Lee, Guangwen Zhou, Jiye Fang

We present a one-pot colloidal synthesis method for producing monodisperse multi-metal (Co, Mn, and Fe) spinel nanocrystals (NCs), including nanocubes, nano-octahedra, and concave nanocubes. This study explores the mechanism of morphology control, showcasing the pivotal roles of metal precursors and capping ligands in determining the exposed crystal planes on the NC surface. The cubic spinel NCs, terminated with exclusive {100}-facets, demonstrate superior electrocatalytic activity for the oxygen reduction reaction (ORR) in alkaline media compared to their octahedral and concave cubic counterparts. Specifically, at 0.85 V, (CoMn)Fe2O4 spinel oxide nanocubes achieve a high mass activity of 23.9 A/g and exhibit excellent stability, highlighting the promising ORR performance associated with {100}-facets of multi-metal spinel oxides over other low-index and high-index facets. Motivated by exploring the correlation between ORR performance and surface atom arrangement (active sites), surface element composition, as well as other factors, this study introduces a prospective approach for shape-controlled synthesis of advanced spinel oxide NCs. It underscores the significance of catalyst shape control and suggests potential applications as nonprecious metal ORR electrocatalysts.

我们提出了一种一锅胶体合成法,用于生产单分散多金属(钴、锰和铁)尖晶石纳米晶体(NC),包括纳米立方体、纳米八面体和凹面纳米立方体。本研究探讨了形态控制机制,展示了金属前驱体和封接配体在决定 NC 表面裸露晶面方面的关键作用。与八面体和凹立方对应物相比,以独有的{100}面终止的立方尖晶石 NC 在碱性介质中的氧还原反应(ORR)中表现出更高的电催化活性。具体而言,在 0.85 V 的电压下,(CoMn)Fe2O4 尖晶石氧化物纳米立方体的质量活性高达 23.9 A/g,并表现出卓越的稳定性,这突出表明与其他低指数和高指数面相比,多金属尖晶石氧化物的{100}面具有良好的氧还原反应性能。通过探索 ORR 性能与表面原子排列(活性位点)、表面元素组成以及其他因素之间的相关性,本研究介绍了一种先进尖晶石氧化物 NC 形状控制合成的前瞻性方法。它强调了催化剂形状控制的重要性,并提出了作为非贵金属 ORR 电催化剂的潜在应用。
{"title":"Morphology-controlled synthesis of multi-metal-based spinel oxide nanocatalysts and their performance for oxygen reduction","authors":"Can Li,&nbsp;Jinfong Pan,&nbsp;Xiaobo Chen,&nbsp;Lihua Zhang,&nbsp;Anna Dennett,&nbsp;Prabhu Bharathan,&nbsp;Douglas Lee,&nbsp;Guangwen Zhou,&nbsp;Jiye Fang","doi":"10.1002/elt2.62","DOIUrl":"https://doi.org/10.1002/elt2.62","url":null,"abstract":"<p>We present a one-pot colloidal synthesis method for producing monodisperse multi-metal (Co, Mn, and Fe) spinel nanocrystals (NCs), including nanocubes, nano-octahedra, and concave nanocubes. This study explores the mechanism of morphology control, showcasing the pivotal roles of metal precursors and capping ligands in determining the exposed crystal planes on the NC surface. The cubic spinel NCs, terminated with exclusive {100}-facets, demonstrate superior electrocatalytic activity for the oxygen reduction reaction (ORR) in alkaline media compared to their octahedral and concave cubic counterparts. Specifically, at 0.85 V, (CoMn)Fe<sub>2</sub>O<sub>4</sub> spinel oxide nanocubes achieve a high mass activity of 23.9 A/g and exhibit excellent stability, highlighting the promising ORR performance associated with {100}-facets of multi-metal spinel oxides over other low-index and high-index facets. Motivated by exploring the correlation between ORR performance and surface atom arrangement (active sites), surface element composition, as well as other factors, this study introduces a prospective approach for shape-controlled synthesis of advanced spinel oxide NCs. It underscores the significance of catalyst shape control and suggests potential applications as nonprecious metal ORR electrocatalysts.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.62","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrocatalytic upcycling of plastic waste: Progress, challenges, and future 塑料废物的电催化升级再循环:进展、挑战和未来
Pub Date : 2024-08-21 DOI: 10.1002/elt2.63
Jinzhou Li, Junliang Chen, Luyao Zhang, Juan Matos, Li Wang, Jianping Yang

The escalating accumulation of plastic waste has been developed into a formidable global environmental challenge. Traditional disposal methods such as landfilling and incineration not only exacerbate environmental degradation by releasing harmful chemicals and greenhouse gases, but also squander finite resources that could otherwise be recycled or repurposed. Upcycling is a kind of plastic recycling technology that converts plastic waste into high-value chemicals and helps to avoid resource waste and environmental pollution. Electrocatalytic upcycling emerges as a novel technology distinguished by its mild operational conditions, high transformation efficiency and product selectivity. This review commences with an overview of the recycling and upcycling technology employed in plastic waste management and the respective advantages and inherent limitations are also delineated. The different types of plastic waste upcycled by electrocatalytic strategy are then discussed and the plastic waste transformation process is examined together with the mechanisms underlying the electrocatalytic upcycling. Furthermore, the structure-activity relationships between electrocatalysts and plastic waste upcycling performance are also elucidated. The review aims to furnish readers with a comprehensive understanding of the electrocatalytic techniques for plastic waste upcycling and to provide a guidance for the design of electrocatalysts towards efficient plastic waste transformation.

塑料废物的不断累积已发展成为一项严峻的全球环境挑战。填埋和焚烧等传统处理方式不仅会释放有害化学物质和温室气体,加剧环境恶化,还会浪费原本可以回收利用的有限资源。升级再造是一种塑料回收技术,可将塑料废弃物转化为高价值的化学品,有助于避免资源浪费和环境污染。电催化升 级再循环是一种新型技术,具有操作条件温和、转化效率高和产品选择性强等特点。本综述首先概述了塑料废物管理中采用的回收和升级再循环技术,并对其各自的优势和固有的局限性进行了阐述。然后,讨论了通过电催化策略进行升级再循环的不同类型的塑料废物,并研究了塑料废物的转化过程以及电催化升级再循环的内在机制。此外,还阐明了电催化剂与塑料废物循环利用性能之间的结构-活性关系。本综述旨在让读者全面了解塑料废弃物升级再循环的电催化技术,并为设计高效塑料废弃物转化的电催化剂提供指导。
{"title":"Electrocatalytic upcycling of plastic waste: Progress, challenges, and future","authors":"Jinzhou Li,&nbsp;Junliang Chen,&nbsp;Luyao Zhang,&nbsp;Juan Matos,&nbsp;Li Wang,&nbsp;Jianping Yang","doi":"10.1002/elt2.63","DOIUrl":"https://doi.org/10.1002/elt2.63","url":null,"abstract":"<p>The escalating accumulation of plastic waste has been developed into a formidable global environmental challenge. Traditional disposal methods such as landfilling and incineration not only exacerbate environmental degradation by releasing harmful chemicals and greenhouse gases, but also squander finite resources that could otherwise be recycled or repurposed. Upcycling is a kind of plastic recycling technology that converts plastic waste into high-value chemicals and helps to avoid resource waste and environmental pollution. Electrocatalytic upcycling emerges as a novel technology distinguished by its mild operational conditions, high transformation efficiency and product selectivity. This review commences with an overview of the recycling and upcycling technology employed in plastic waste management and the respective advantages and inherent limitations are also delineated. The different types of plastic waste upcycled by electrocatalytic strategy are then discussed and the plastic waste transformation process is examined together with the mechanisms underlying the electrocatalytic upcycling. Furthermore, the structure-activity relationships between electrocatalysts and plastic waste upcycling performance are also elucidated. The review aims to furnish readers with a comprehensive understanding of the electrocatalytic techniques for plastic waste upcycling and to provide a guidance for the design of electrocatalysts towards efficient plastic waste transformation.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.63","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142099971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phase-controllable cobalt phosphide heterostructure for efficient electrocatalytic hydrogen evolution in water and seawater 用于水和海水中高效电催化氢进化的相位可控磷化钴异质结构
Pub Date : 2024-07-25 DOI: 10.1002/elt2.58
Guo Huang, Yujin Huang, Asad Ali, Zhijie Chen, Pei Kang Shen, Bing-Jie Ni, Jinliang Zhu

Cobalt phosphides attract broad attention as alternatives to platinum-based materials towards hydrogen evolution reaction (HER). The catalytic performance of cobalt phosphides largely depends on the phase structure, but figuring out the optimal phase towards HER remains challenging due to their diverse stoichiometries. In our work, a series of cobalt phosphide nanoparticles with different phase structures but similar particle sizes (CoP-Co2P, Co2P-Co, Co2P, and CoP) on a porous carbon network (PC) were accurately synthesized. The CoP-Co2P/PC heterostructure demonstrates upgraded HER catalytic activity with a low overpotential of 96.7 and 162.1 mV at 10 mA cm−2 in 1 M KOH and 1 M phosphate-buffered saline solution, respectively, with a long-term (120 h) durability. In addition, the CoP-Co2P/PC exhibits good HER performance in alkaline seawater, with a small overpotential of 111.2 mV at 10 mA cm−2 and a low Tafel slope of 64.2 mV dec−1, as well as promising stability. Density functional theory results show that the Co2P side of the CoP-Co2P/PC heterostructure has the best Gibbs free energy of each step for HER, which contributes to the high HER activity. This study sets the stage for the advancement of high-performance HER electrocatalysts and the implementation of large-scale seawater electrolysis.

磷化钴作为铂基材料的替代品,在氢进化反应(HER)中备受关注。磷化钴的催化性能在很大程度上取决于相结构,但由于磷化钴的化学计量学各不相同,因此找出氢进化反应的最佳相仍然具有挑战性。在我们的工作中,我们在多孔碳网络(PC)上精确合成了一系列具有不同相结构但粒径相似的磷化钴纳米颗粒(CoP-Co2P、Co2P-Co、Co2P 和 CoP)。CoP-Co2P/PC 异质结构表现出更高的 HER 催化活性,在 1 M KOH 和 1 M 磷酸盐缓冲盐溶液中,10 mA cm-2 的过电位分别为 96.7 和 162.1 mV,且具有长期(120 h)的耐久性。此外,CoP-Co2P/PC 在碱性海水中表现出良好的 HER 性能,在 10 mA cm-2 时过电位小(111.2 mV),塔菲尔斜率低(64.2 mV dec-1),并且具有良好的稳定性。密度泛函理论结果表明,CoP-Co2P/PC 异质结构的 Co2P 侧在 HER 的每个步骤中都具有最佳的吉布斯自由能,这有助于提高 HER 活性。这项研究为开发高性能 HER 电催化剂和实现大规模海水电解奠定了基础。
{"title":"Phase-controllable cobalt phosphide heterostructure for efficient electrocatalytic hydrogen evolution in water and seawater","authors":"Guo Huang,&nbsp;Yujin Huang,&nbsp;Asad Ali,&nbsp;Zhijie Chen,&nbsp;Pei Kang Shen,&nbsp;Bing-Jie Ni,&nbsp;Jinliang Zhu","doi":"10.1002/elt2.58","DOIUrl":"10.1002/elt2.58","url":null,"abstract":"<p>Cobalt phosphides attract broad attention as alternatives to platinum-based materials towards hydrogen evolution reaction (HER). The catalytic performance of cobalt phosphides largely depends on the phase structure, but figuring out the optimal phase towards HER remains challenging due to their diverse stoichiometries. In our work, a series of cobalt phosphide nanoparticles with different phase structures but similar particle sizes (CoP-Co<sub>2</sub>P, Co<sub>2</sub>P-Co, Co<sub>2</sub>P, and CoP) on a porous carbon network (PC) were accurately synthesized. The CoP-Co<sub>2</sub>P/PC heterostructure demonstrates upgraded HER catalytic activity with a low overpotential of 96.7 and 162.1 mV at 10 mA cm<sup>−2</sup> in 1 M KOH and 1 M phosphate-buffered saline solution, respectively, with a long-term (120 h) durability. In addition, the CoP-Co<sub>2</sub>P/PC exhibits good HER performance in alkaline seawater, with a small overpotential of 111.2 mV at 10 mA cm<sup>−2</sup> and a low Tafel slope of 64.2 mV dec<sup>−1</sup>, as well as promising stability. Density functional theory results show that the Co<sub>2</sub>P side of the CoP-Co<sub>2</sub>P/PC heterostructure has the best Gibbs free energy of each step for HER, which contributes to the high HER activity. This study sets the stage for the advancement of high-performance HER electrocatalysts and the implementation of large-scale seawater electrolysis.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.58","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141805956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Perspective on eutectic electrolytes for next-generation batteries 下一代电池共晶电解质展望
Pub Date : 2024-07-11 DOI: 10.1002/elt2.57
Jiajie Zhang, Yonghui Zhang, Jie Fu, Xianfeng Li, Changkun Zhang

The environmental challenges and growing energy demand have promoted the development of renewable energy, including solar, tidal, and wind. The next-generation electrochemical energy storage (EES), incorporating flow battery (FB) and metal-based battery (MB, Li, Na, Zn, Mg, etc.) received more attention. The flammable electrolytes in nonaqueous batteries have raised serious safety hazards and more unconventional electrolyte systems have been proposed recently. An emerging class of electrolytes, eutectic electrolytes have been reported in many batteries due to the facile preparation, concentrated states, and unique ion transport properties. In FB, eutectic electrolytes can significantly increase the energy density by promoting the molar ratio of redox active materials. In MB, eutectic electrolytes reduce the vapor pressure and toxicity, inhibit metal dendrites growth, and enlarge the electrochemical window. In this review, we summarize the progress status of different eutectic electrolytes on both FBs and MBs. We expect this review can supply the guidance for the application of eutectic electrolytes in EES.

环境挑战和日益增长的能源需求促进了太阳能、潮汐能和风能等可再生能源的发展。下一代电化学储能(EES),包括液流电池(FB)和金属基电池(MB、Li、Na、Zn、Mg 等)受到更多关注。非水性电池中的易燃电解质存在严重的安全隐患,因此最近提出了更多的非常规电解质系统。共晶电解质是一类新兴的电解质,由于其易于制备、具有浓缩状态和独特的离子传输特性,在许多电池中都有应用。在 FB 中,共晶电解质可以通过提高氧化还原活性材料的摩尔比来显著提高能量密度。在 MB 中,共晶电解质可降低蒸气压和毒性,抑制金属枝晶的生长,扩大电化学窗口。在本综述中,我们总结了不同共晶电解质在 FB 和 MB 中的应用进展情况。我们希望本综述能为共晶电解质在 EES 中的应用提供指导。
{"title":"Perspective on eutectic electrolytes for next-generation batteries","authors":"Jiajie Zhang,&nbsp;Yonghui Zhang,&nbsp;Jie Fu,&nbsp;Xianfeng Li,&nbsp;Changkun Zhang","doi":"10.1002/elt2.57","DOIUrl":"10.1002/elt2.57","url":null,"abstract":"<p>The environmental challenges and growing energy demand have promoted the development of renewable energy, including solar, tidal, and wind. The next-generation electrochemical energy storage (EES), incorporating flow battery (FB) and metal-based battery (MB, Li, Na, Zn, Mg, etc.) received more attention. The flammable electrolytes in nonaqueous batteries have raised serious safety hazards and more unconventional electrolyte systems have been proposed recently. An emerging class of electrolytes, eutectic electrolytes have been reported in many batteries due to the facile preparation, concentrated states, and unique ion transport properties. In FB, eutectic electrolytes can significantly increase the energy density by promoting the molar ratio of redox active materials. In MB, eutectic electrolytes reduce the vapor pressure and toxicity, inhibit metal dendrites growth, and enlarge the electrochemical window. In this review, we summarize the progress status of different eutectic electrolytes on both FBs and MBs. We expect this review can supply the guidance for the application of eutectic electrolytes in EES.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.57","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141655926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MOF‐derived Co/C‐anchored MoS2‐based phase change materials toward thermal management and microwave absorption 基于 MOF 衍生 Co/C-anchored MoS2 的相变材料,用于热管理和微波吸收
Pub Date : 2024-07-03 DOI: 10.1002/elt2.56
Yang Li, Xukang Han, Jiaying Zhu, Yuhao Feng, Panpan Liu, Xiao Chen
With the miniaturization and integration of electronic devices, developing advanced multifunctional phase change materials (PCMs) integrating thermal storage, thermal conduction, and microwave absorption to address electromagnetic interference, thermal dissipation, and instantaneous thermal shock is imperative. Herein, we proposed an extensible strategy to synthesize MOF‐derived Co/C‐anchored MoS2‐based PCMs using high‐temperature carbonation of flower‐like MoS2 grown in situ by ZIF67 and vacuum impregnation of paraffin. The resulting MoS2@Co/C‐paraffin composite PCMs exhibited good thermal storage density, thermal cycling stability, and long‐term durability. The thermal conductivity of composite PCMs was 44% higher than that of pristine paraffin due to the construction of low interfacial thermal resistance. More attractively, our designed composite PCMs also possessed −57.15 dB minimum reflection loss at 9.2 GHz with a thickness of 3.0 mm, corresponding to an effective absorption bandwidth of 3.86 GHz. The excellent microwave absorption was attributed to the multicomponent synergy of magnetic loss from Co nanoparticles and conductive loss from MOF‐derived carbon layers, and multiple reflection of MoS2 nanowrinkle, along with good impedance matching. This study provided a meaningful reference for the widespread application of composite PCMs combining thermal storage, thermal conduction, and microwave absorption in high‐power miniaturized electronic devices.
随着电子设备的微型化和集成化,开发集蓄热、热传导和微波吸收于一体的先进多功能相变材料 (PCM) 以解决电磁干扰、热耗散和瞬时热冲击问题势在必行。在此,我们提出了一种可扩展的策略,利用 ZIF67 对原位生长的花状 MoS2 进行高温碳化和石蜡真空浸渍,合成 MOF 衍生的 Co/C-anchored MoS2 基 PCM。所制备的 MoS2@Co/C-paraffin 复合 PCM 具有良好的蓄热密度、热循环稳定性和长期耐久性。由于构建了低界面热阻,复合 PCM 的热导率比原始石蜡高 44%。更吸引人的是,我们设计的复合 PCM 在 9.2 GHz 频率下具有 -57.15 dB 的最小反射损耗,厚度为 3.0 mm,有效吸收带宽为 3.86 GHz。优异的微波吸收性能归功于 Co 纳米粒子的磁性损耗、MOF 衍生碳层的导电损耗、MoS2 纳米皱纹的多重反射以及良好的阻抗匹配等多组分协同作用。这项研究为集热存储、热传导和微波吸收于一体的复合 PCM 在大功率微型电子设备中的广泛应用提供了有意义的参考。
{"title":"MOF‐derived Co/C‐anchored MoS2‐based phase change materials toward thermal management and microwave absorption","authors":"Yang Li, Xukang Han, Jiaying Zhu, Yuhao Feng, Panpan Liu, Xiao Chen","doi":"10.1002/elt2.56","DOIUrl":"https://doi.org/10.1002/elt2.56","url":null,"abstract":"With the miniaturization and integration of electronic devices, developing advanced multifunctional phase change materials (PCMs) integrating thermal storage, thermal conduction, and microwave absorption to address electromagnetic interference, thermal dissipation, and instantaneous thermal shock is imperative. Herein, we proposed an extensible strategy to synthesize MOF‐derived Co/C‐anchored MoS2‐based PCMs using high‐temperature carbonation of flower‐like MoS2 grown in situ by ZIF67 and vacuum impregnation of paraffin. The resulting MoS2@Co/C‐paraffin composite PCMs exhibited good thermal storage density, thermal cycling stability, and long‐term durability. The thermal conductivity of composite PCMs was 44% higher than that of pristine paraffin due to the construction of low interfacial thermal resistance. More attractively, our designed composite PCMs also possessed −57.15 dB minimum reflection loss at 9.2 GHz with a thickness of 3.0 mm, corresponding to an effective absorption bandwidth of 3.86 GHz. The excellent microwave absorption was attributed to the multicomponent synergy of magnetic loss from Co nanoparticles and conductive loss from MOF‐derived carbon layers, and multiple reflection of MoS2 nanowrinkle, along with good impedance matching. This study provided a meaningful reference for the widespread application of composite PCMs combining thermal storage, thermal conduction, and microwave absorption in high‐power miniaturized electronic devices.","PeriodicalId":100403,"journal":{"name":"Electron","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141680343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multifunctional diamond-based catalysts: Promising candidates for energy conversions in extreme environments—A mini-review 多功能金刚石催化剂:在极端环境中进行能量转换的理想候选者--微型综述
Pub Date : 2024-07-01 DOI: 10.1002/elt2.45
Ziwei Zhao, Xiaowu Gao, Hansong Zhang, Keran Jiao, Pengfei Song, Yumin Zhang, Yongjie Wang, Jiaqi Zhu

In order to properly utilize the abundant CO2 and water resources, various catalytic materials have been developed to convert them into valuable chemicals as renewable fuels electrochemically or photochemically. Currently, most studies are conducted under mild laboratory conditions, but for some extreme environments, such as Mars and space stations, there is an urgent need to develop new catalysts satisfying such special requirements. Conventional catalytic materials mainly focus on metals and narrow bandgap semiconductor materials, while the research on wide and ultrawide bandgap materials that can inherently withstand extreme conditions has not received enough attention. Given the robust stability and excellent physico-chemical properties of diamond, it can be expected to perform in harsh environments for electrocatalysis or photocatalysis that has not been investigated thoroughly. Here, this review summarizes the catalytic functionality of diamond-based electrodes with various but tunable product selectivity to obtain the varied C1 or C2+ products, and discusses some important factors playing a key role in manipulating the catalytic activity. Moreover, the unique solvation electron effect of diamond gives it a significant advantage in photocatalytic conversions which is also summarized in this mini-review. In the end, prospects are made for the application of diamond-based catalysts under various extreme conditions. The challenges that may be faced in practical applications are also summarized and future breakthrough directions are proposed at the end.

为了合理利用丰富的二氧化碳和水资源,人们开发了各种催化材料,通过电化学或光化学方法将其转化为有价值的化学品,作为可再生燃料。目前,大多数研究都是在温和的实验室条件下进行的,但对于一些极端环境,如火星和空间站,迫切需要开发新的催化剂来满足这些特殊要求。传统的催化材料主要集中在金属和窄带隙半导体材料上,而本身就能承受极端条件的宽带隙和超宽带隙材料的研究还没有得到足够的重视。鉴于金刚石具有强大的稳定性和优异的物理化学特性,它有望在恶劣环境中发挥电催化或光催化的作用,但这方面的研究还不够深入。本综述总结了金刚石电极的催化功能,它具有多种可调的产物选择性,可获得不同的 C1 或 C2+ 产物,并讨论了在操纵催化活性过程中起关键作用的一些重要因素。此外,金刚石独特的溶解电子效应使其在光催化转化方面具有显著优势,本微型综述也对此进行了总结。最后,还展望了金刚石催化剂在各种极端条件下的应用前景。最后还总结了实际应用中可能面临的挑战,并提出了未来的突破方向。
{"title":"Multifunctional diamond-based catalysts: Promising candidates for energy conversions in extreme environments—A mini-review","authors":"Ziwei Zhao,&nbsp;Xiaowu Gao,&nbsp;Hansong Zhang,&nbsp;Keran Jiao,&nbsp;Pengfei Song,&nbsp;Yumin Zhang,&nbsp;Yongjie Wang,&nbsp;Jiaqi Zhu","doi":"10.1002/elt2.45","DOIUrl":"10.1002/elt2.45","url":null,"abstract":"<p>In order to properly utilize the abundant CO<sub>2</sub> and water resources, various catalytic materials have been developed to convert them into valuable chemicals as renewable fuels electrochemically or photochemically. Currently, most studies are conducted under mild laboratory conditions, but for some extreme environments, such as Mars and space stations, there is an urgent need to develop new catalysts satisfying such special requirements. Conventional catalytic materials mainly focus on metals and narrow bandgap semiconductor materials, while the research on wide and ultrawide bandgap materials that can inherently withstand extreme conditions has not received enough attention. Given the robust stability and excellent physico-chemical properties of diamond, it can be expected to perform in harsh environments for electrocatalysis or photocatalysis that has not been investigated thoroughly. Here, this review summarizes the catalytic functionality of diamond-based electrodes with various but tunable product selectivity to obtain the varied C<sub>1</sub> or C<sub>2+</sub> products, and discusses some important factors playing a key role in manipulating the catalytic activity. Moreover, the unique solvation electron effect of diamond gives it a significant advantage in photocatalytic conversions which is also summarized in this mini-review. In the end, prospects are made for the application of diamond-based catalysts under various extreme conditions. The challenges that may be faced in practical applications are also summarized and future breakthrough directions are proposed at the end.</p>","PeriodicalId":100403,"journal":{"name":"Electron","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elt2.45","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141691825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Electron
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1