Manifold Learning: What, How, and Why

IF 7.4 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Annual Review of Statistics and Its Application Pub Date : 2023-11-29 DOI:10.1146/annurev-statistics-040522-115238
Marina Meilă, Hanyu Zhang
{"title":"Manifold Learning: What, How, and Why","authors":"Marina Meilă, Hanyu Zhang","doi":"10.1146/annurev-statistics-040522-115238","DOIUrl":null,"url":null,"abstract":"Manifold learning (ML), also known as nonlinear dimension reduction, is a set of methods to find the low-dimensional structure of data. Dimension reduction for large, high-dimensional data is not merely a way to reduce the data; the new representations and descriptors obtained by ML reveal the geometric shape of high-dimensional point clouds and allow one to visualize, denoise, and interpret them. This review presents the underlying principles of ML, its representative methods, and their statistical foundations, all from a practicing statistician's perspective. It describes the trade-offs and what theory tells us about the parameter and algorithmic choices we make in order to obtain reliable conclusions.Expected final online publication date for the Annual Review of Statistics and Its Application, Volume 11 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":48855,"journal":{"name":"Annual Review of Statistics and Its Application","volume":"101 5","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Statistics and Its Application","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1146/annurev-statistics-040522-115238","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Manifold learning (ML), also known as nonlinear dimension reduction, is a set of methods to find the low-dimensional structure of data. Dimension reduction for large, high-dimensional data is not merely a way to reduce the data; the new representations and descriptors obtained by ML reveal the geometric shape of high-dimensional point clouds and allow one to visualize, denoise, and interpret them. This review presents the underlying principles of ML, its representative methods, and their statistical foundations, all from a practicing statistician's perspective. It describes the trade-offs and what theory tells us about the parameter and algorithmic choices we make in order to obtain reliable conclusions.Expected final online publication date for the Annual Review of Statistics and Its Application, Volume 11 is March 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多元学习:什么,如何,为什么
流形学习(Manifold learning, ML),也称为非线性降维,是一组寻找数据低维结构的方法。大型、高维数据的降维不仅仅是一种数据降维的方法;机器学习获得的新表示和描述符揭示了高维点云的几何形状,并允许人们对它们进行可视化、去噪和解释。这篇综述介绍了机器学习的基本原理,它的代表性方法,以及它们的统计基础,所有这些都是从一个实践统计学家的角度出发的。它描述了权衡,以及理论告诉我们为了获得可靠的结论而做出的参数和算法选择。预计《统计年鉴及其应用》第11卷的最终在线出版日期为2024年3月。修订后的估计数请参阅http://www.annualreviews.org/page/journal/pubdates。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Statistics and Its Application
Annual Review of Statistics and Its Application MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
13.40
自引率
1.30%
发文量
29
期刊介绍: The Annual Review of Statistics and Its Application publishes comprehensive review articles focusing on methodological advancements in statistics and the utilization of computational tools facilitating these advancements. It is abstracted and indexed in Scopus, Science Citation Index Expanded, and Inspec.
期刊最新文献
A Survey on Statistical Theory of Deep Learning: Approximation, Training Dynamics, and Generative Models Models and Rating Systems for Head-to-Head Competition A Review of Reinforcement Learning in Financial Applications Joint Modeling of Longitudinal and Survival Data Infectious Disease Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1