Catherine Gestrich, Kristina Grieco, Hart G Lidov, Lissa C Baird, Katie P Fehnel, Kee Kiat Yeo, David M Meredith, Sanda Alexandrescu
{"title":"H3K27-altered diffuse midline gliomas with MAPK pathway alterations: Prognostic and therapeutic implications.","authors":"Catherine Gestrich, Kristina Grieco, Hart G Lidov, Lissa C Baird, Katie P Fehnel, Kee Kiat Yeo, David M Meredith, Sanda Alexandrescu","doi":"10.1093/jnen/nlad103","DOIUrl":null,"url":null,"abstract":"<p><p>Large-scale sequencing led to the identification of driver molecular alterations such as FGFR1 and BRAF in occasional diffuse midline gliomas (DMGs) H3K27-mutant but their significance has not been completely explored. We evaluated these associations in our institutional cohorts. We searched our archives for H3K2M7-mutant gliomas and analyzed the co-occurring genetic alterations. The demographics, clinical information, and pathology were reviewed. Oncoplots and Kaplan-Meier survival curves were generated with the maftools R package. We identified 81 patients (age range 2-68, median 26), of which 79 (97%) were DMGs, and 2 were glioneuronal tumors. The 2 glioneuronal tumors (1 with BRAF fusion and 1 BRAF-V600E-mutant) were removed from the outcome analysis. Four cases had BRAF V600E mutation, 12 had FGFR1 hotspot mutations, and one each had KRAS and NRAS pathogenic mutations. The most common correlating anatomic location was the brainstem for the BRAF group and thalamus for the FGFR1group. Follow-up ranged from 0 to 78 months, average 20.4 months. The overall survival in FGFR1- and BRAF V600E-mutant DMGs was not statistically improved when compared with those that were wildtype. However, the possibility of targeted therapy argues for comprehensive sequencing of H3K27-altered gliomas.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jnen/nlad103","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Large-scale sequencing led to the identification of driver molecular alterations such as FGFR1 and BRAF in occasional diffuse midline gliomas (DMGs) H3K27-mutant but their significance has not been completely explored. We evaluated these associations in our institutional cohorts. We searched our archives for H3K2M7-mutant gliomas and analyzed the co-occurring genetic alterations. The demographics, clinical information, and pathology were reviewed. Oncoplots and Kaplan-Meier survival curves were generated with the maftools R package. We identified 81 patients (age range 2-68, median 26), of which 79 (97%) were DMGs, and 2 were glioneuronal tumors. The 2 glioneuronal tumors (1 with BRAF fusion and 1 BRAF-V600E-mutant) were removed from the outcome analysis. Four cases had BRAF V600E mutation, 12 had FGFR1 hotspot mutations, and one each had KRAS and NRAS pathogenic mutations. The most common correlating anatomic location was the brainstem for the BRAF group and thalamus for the FGFR1group. Follow-up ranged from 0 to 78 months, average 20.4 months. The overall survival in FGFR1- and BRAF V600E-mutant DMGs was not statistically improved when compared with those that were wildtype. However, the possibility of targeted therapy argues for comprehensive sequencing of H3K27-altered gliomas.