Intracranial aneurysms (IAs) affect 1%-5% of the public and are a major cause of subarachnoid hemorrhage. Currently, there is no medical treatment to prevent the progression or rupture of IAs. Recent studies have defined IA as a chronic inflammatory disease in which macrophages infiltrate intracranial arteries via the CCL2-CCR2 axis. The chemokine signal regulator FROUNT mediates this axis, and it can be inhibited by the anti-alcoholism drug disulfiram. Therefore, inhibition of macrophage infiltration by interfering with FROUNT using disulfiram may represent a strategy to prevent exacerbation of IAs. Here, effects of disulfiram were investigated in vitro and in an animal model of IAs. FROUNT expression was observed on infiltrated macrophages both in human IAs and in the rat IA model by immunohistochemistry. In vitro treatment with disulfiram suppressed CCL2-mediated migration of cultured rat macrophages in a transwell system. Disulfiram administered in a rat model of IAs inhibited both the initiation and the enlargement of IAs in a dose-dependent manner; this was accompanied by suppression of macrophage infiltration. These results suggest that pharmacological inhibition of the CCL2-CCR2-FROUNT signaling cascade could be a treatment of patients with IAs.
颅内动脉瘤(IAs)影响着1%-5%的公众,是蛛网膜下腔出血的主要原因。目前,还没有任何药物可以预防颅内动脉瘤的恶化或破裂。最近的研究将 IA 定义为一种慢性炎症性疾病,其中巨噬细胞通过 CCL2-CCR2 轴浸润颅内动脉。趋化因子信号调节器 FROUNT 介导了这一轴心,抗酒精中毒药物双硫仑可抑制这一轴心。因此,通过使用双硫仑干扰 FROUNT 来抑制巨噬细胞的浸润,可能是预防内科疾病恶化的一种策略。在此,我们研究了双硫仑在体外和IAs动物模型中的作用。通过免疫组织化学方法,在人类原发性心肌梗死和大鼠原发性心肌梗死模型中的浸润巨噬细胞上都观察到了FROUNT的表达。体外使用双硫仑可抑制CCL2介导的大鼠巨噬细胞在转孔系统中的迁移。在大鼠IAs模型中施用双硫仑能以剂量依赖的方式抑制IAs的发生和扩大,同时还能抑制巨噬细胞的浸润。这些结果表明,药物抑制CCL2-CCR2-FROUNT信号级联可用于治疗IAs患者。
{"title":"Potential of the pharmacological inhibition of CCL2-CCR2 axis via targeting FROUNT to prevent the initiation and the progression of intracranial aneurysms in rats.","authors":"Isao Ono, Masahiko Itani, Akihiro Okada, Akitsugu Kawashima, Etsuko Toda, Yoshiki Arakawa, Yuya Terashima, Tomohiro Aoki","doi":"10.1093/jnen/nlae115","DOIUrl":"https://doi.org/10.1093/jnen/nlae115","url":null,"abstract":"<p><p>Intracranial aneurysms (IAs) affect 1%-5% of the public and are a major cause of subarachnoid hemorrhage. Currently, there is no medical treatment to prevent the progression or rupture of IAs. Recent studies have defined IA as a chronic inflammatory disease in which macrophages infiltrate intracranial arteries via the CCL2-CCR2 axis. The chemokine signal regulator FROUNT mediates this axis, and it can be inhibited by the anti-alcoholism drug disulfiram. Therefore, inhibition of macrophage infiltration by interfering with FROUNT using disulfiram may represent a strategy to prevent exacerbation of IAs. Here, effects of disulfiram were investigated in vitro and in an animal model of IAs. FROUNT expression was observed on infiltrated macrophages both in human IAs and in the rat IA model by immunohistochemistry. In vitro treatment with disulfiram suppressed CCL2-mediated migration of cultured rat macrophages in a transwell system. Disulfiram administered in a rat model of IAs inhibited both the initiation and the enlargement of IAs in a dose-dependent manner; this was accompanied by suppression of macrophage infiltration. These results suggest that pharmacological inhibition of the CCL2-CCR2-FROUNT signaling cascade could be a treatment of patients with IAs.</p>","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142682047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yunzhu Guo, Yangxin Li, Peng Su, Min Yan, Ming Wang, Shenjie Li, Wei Xiang, Ligang Chen, Wei Dong, Zhengjun Zhou, Jie Zhou
High-grade infiltrating gliomas are highly aggressive and fatal brain tumors that present significant challenges for research and treatment due to their complex microenvironment and tissue structure. Recent discovery of tumor microtubes (TMs) has provided new insights into how high-grade gliomas develop in the brain and resist treatment. TMs are unique, ultra-long, and highly functional membrane protrusions that form multicellular networks and play crucial roles in glioma invasiveness, drug resistance, recurrence, and heterogeneity. This review focuses on the different roles that TMs play in glioma cell communication, material transport, and tumor cell behavior. Specifically, non-connecting TMs primarily promote glioma invasiveness, likely related to their role in enhancing cell motility. On the other hand, interconnecting TMs form functional and communication networks by connecting with surrounding astrocytes and neurons, thereby promoting glioma malignancy. We summarize the factors that influence the formation of TMs in gliomas and current strategies targeting TMs. As the understanding of TMs advances, we are closer to uncovering whether they might be the long-sought Achilles' heel of treatment-resistant gliomas. By delving deeper into TMs research, we hope to develop more effective therapeutic strategies for patients with malignant gliomas.
{"title":"Tumor microtubes: A new potential therapeutic target for high-grade gliomas.","authors":"Yunzhu Guo, Yangxin Li, Peng Su, Min Yan, Ming Wang, Shenjie Li, Wei Xiang, Ligang Chen, Wei Dong, Zhengjun Zhou, Jie Zhou","doi":"10.1093/jnen/nlae119","DOIUrl":"10.1093/jnen/nlae119","url":null,"abstract":"<p><p>High-grade infiltrating gliomas are highly aggressive and fatal brain tumors that present significant challenges for research and treatment due to their complex microenvironment and tissue structure. Recent discovery of tumor microtubes (TMs) has provided new insights into how high-grade gliomas develop in the brain and resist treatment. TMs are unique, ultra-long, and highly functional membrane protrusions that form multicellular networks and play crucial roles in glioma invasiveness, drug resistance, recurrence, and heterogeneity. This review focuses on the different roles that TMs play in glioma cell communication, material transport, and tumor cell behavior. Specifically, non-connecting TMs primarily promote glioma invasiveness, likely related to their role in enhancing cell motility. On the other hand, interconnecting TMs form functional and communication networks by connecting with surrounding astrocytes and neurons, thereby promoting glioma malignancy. We summarize the factors that influence the formation of TMs in gliomas and current strategies targeting TMs. As the understanding of TMs advances, we are closer to uncovering whether they might be the long-sought Achilles' heel of treatment-resistant gliomas. By delving deeper into TMs research, we hope to develop more effective therapeutic strategies for patients with malignant gliomas.</p>","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In situ hybridization (ISH) staining of bacterial 16S ribosomal RNA (rRNA) is an alternative to standard histological stains (eg, Gram, Warthin-Starry), and may improve the diagnosis of bacterial brain abscesses. To evaluate the utility of 16S rRNA ISH, a 10-year retrospective cohort was assembled from a large academic medical center. Results of histological stains, cultures, and 16S rRNA sequencing were extracted from reports, and new Gram and 16S rRNA ISH stains were performed. Histologically identifiable bacteria were present in 40/63 (63%) cases and 38/57 (67%) were associated with positive cultures. Overall, 16S rRNA ISH was positive in 18/63 (29%) cases, including 16/37 (43%) with positive Gram stains, 12/38 (32%) positive by culture, and 4/8 (50%) positive by sequencing. 16S rRNA ISH highlighted bacteria in 14/40 (35%) cases with Gram-positive organisms and 9/17 (53%) with Gram-negative organisms (including 6 polymicrobial cases). Compared to a composite gold standard of Gram stain and culture, the sensitivity and specificity of 16S rRNA ISH were 35% and 93%, respectively. While sensitivity is relatively low, 16S rRNA ISH may be useful for distinguishing real organisms from artifacts and for identifying brain abscess cases suitable for 16S rRNA sequencing.
细菌 16S 核糖体 RNA(rRNA)原位杂交(ISH)染色法是标准组织学染色法(如革兰氏染色法、Warthin-Starry 染色法)的一种替代方法,可提高细菌性脑脓肿的诊断率。为了评估 16S rRNA ISH 的实用性,我们从一家大型学术医疗中心收集了一个 10 年回顾性队列。从报告中提取了组织学染色、培养和 16S rRNA 测序的结果,并进行了新的革兰氏和 16S rRNA ISH 染色。40/63(63%)个病例中存在组织学上可识别的细菌,38/57(67%)个病例的细菌培养呈阳性。总体而言,16S rRNA ISH 在 18/63 个病例(29%)中呈阳性,其中 16/37 个病例(43%)革兰氏染色呈阳性,12/38 个病例(32%)培养呈阳性,4/8 个病例(50%)测序呈阳性。16S rRNA ISH 在 14/40 例(35%)革兰阳性病例和 9/17 例(53%)革兰阴性病例(包括 6 例多微生物病例)中突出显示了细菌。与革兰氏染色和培养的复合金标准相比,16S rRNA ISH 的灵敏度和特异性分别为 35% 和 93%。虽然灵敏度相对较低,但 16S rRNA ISH 可能有助于区分真实生物与伪造生物,并确定适合进行 16S rRNA 测序的脑脓肿病例。
{"title":"Detection of Gram-positive and Gram-negative bacteria in brain abscesses by 16S rRNA in situ hybridization.","authors":"William Mbongo, Alvaro C Laga, Isaac H Solomon","doi":"10.1093/jnen/nlae118","DOIUrl":"https://doi.org/10.1093/jnen/nlae118","url":null,"abstract":"<p><p>In situ hybridization (ISH) staining of bacterial 16S ribosomal RNA (rRNA) is an alternative to standard histological stains (eg, Gram, Warthin-Starry), and may improve the diagnosis of bacterial brain abscesses. To evaluate the utility of 16S rRNA ISH, a 10-year retrospective cohort was assembled from a large academic medical center. Results of histological stains, cultures, and 16S rRNA sequencing were extracted from reports, and new Gram and 16S rRNA ISH stains were performed. Histologically identifiable bacteria were present in 40/63 (63%) cases and 38/57 (67%) were associated with positive cultures. Overall, 16S rRNA ISH was positive in 18/63 (29%) cases, including 16/37 (43%) with positive Gram stains, 12/38 (32%) positive by culture, and 4/8 (50%) positive by sequencing. 16S rRNA ISH highlighted bacteria in 14/40 (35%) cases with Gram-positive organisms and 9/17 (53%) with Gram-negative organisms (including 6 polymicrobial cases). Compared to a composite gold standard of Gram stain and culture, the sensitivity and specificity of 16S rRNA ISH were 35% and 93%, respectively. While sensitivity is relatively low, 16S rRNA ISH may be useful for distinguishing real organisms from artifacts and for identifying brain abscess cases suitable for 16S rRNA sequencing.</p>","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142605042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shengqiang Zhou, Bo Li, Dahua Wu, Yanjun Chen, Wen Zeng, Jia Huang, Lingjuan Tan, Guo Mao, Fang Liu
Ischemic stroke results in inhibition of axonal regeneration but the roles of fibrinogen (Fg) in neuronal signaling and energy crises in experimental stroke are under-investigated. We explored the mechanism of Fg modulation of axonal regeneration and neuronal energy crisis after cerebral ischemia using a permanent middle cerebral artery occlusion (MCAO) rat model and primary cortical neurons under low glucose-low oxygen. Behavioral tests assessed neurological deficits; immunofluorescence, immunohistochemistry, and Western-blot analyzed Fg and protein levels. Fluo-3/AM fluorescence measured free Ca2+ and ATP levels were gauged via specific assays and F560nm/F510nm ratio calculations. Mito-Tracker Green labeled mitochondria and immunoprecipitation studied protein interactions. Our comprehensive study revealed that Fg inhibited axonal regeneration post-MCAO as indicated by reduced GAP43 expression along with elevated free Ca2+, both suggesting an energy crisis. Fg impeded mitochondrial function and mediated impairment through the EGFR/Ca2+ axis by trans-activating EGFR via integrin αvβ3 interaction. These results indicate that the binding of Fg with integrin αvβ3 leads to the trans-activation of the EGFR/Ca2+ signaling axis thereby disrupting mitochondrial energy transport and axonal regeneration and exacerbating the detrimental effects of ischemic neuronal injury.
{"title":"Mechanisms of fibrinogen trans-activation of the EGFR/Ca2+ signaling axis to regulate mitochondrial transport and energy transfer and inhibit axonal regeneration following cerebral ischemia.","authors":"Shengqiang Zhou, Bo Li, Dahua Wu, Yanjun Chen, Wen Zeng, Jia Huang, Lingjuan Tan, Guo Mao, Fang Liu","doi":"10.1093/jnen/nlae114","DOIUrl":"https://doi.org/10.1093/jnen/nlae114","url":null,"abstract":"<p><p>Ischemic stroke results in inhibition of axonal regeneration but the roles of fibrinogen (Fg) in neuronal signaling and energy crises in experimental stroke are under-investigated. We explored the mechanism of Fg modulation of axonal regeneration and neuronal energy crisis after cerebral ischemia using a permanent middle cerebral artery occlusion (MCAO) rat model and primary cortical neurons under low glucose-low oxygen. Behavioral tests assessed neurological deficits; immunofluorescence, immunohistochemistry, and Western-blot analyzed Fg and protein levels. Fluo-3/AM fluorescence measured free Ca2+ and ATP levels were gauged via specific assays and F560nm/F510nm ratio calculations. Mito-Tracker Green labeled mitochondria and immunoprecipitation studied protein interactions. Our comprehensive study revealed that Fg inhibited axonal regeneration post-MCAO as indicated by reduced GAP43 expression along with elevated free Ca2+, both suggesting an energy crisis. Fg impeded mitochondrial function and mediated impairment through the EGFR/Ca2+ axis by trans-activating EGFR via integrin αvβ3 interaction. These results indicate that the binding of Fg with integrin αvβ3 leads to the trans-activation of the EGFR/Ca2+ signaling axis thereby disrupting mitochondrial energy transport and axonal regeneration and exacerbating the detrimental effects of ischemic neuronal injury.</p>","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Erin E Connolly, John F Ervin, Brenda L Plassman, Kathleen A Welsh-Bohmer, Shih-Hsiu J Wang
{"title":"Star-shaped TDP-43 inclusions in the oldest-old.","authors":"Erin E Connolly, John F Ervin, Brenda L Plassman, Kathleen A Welsh-Bohmer, Shih-Hsiu J Wang","doi":"10.1093/jnen/nlae116","DOIUrl":"https://doi.org/10.1093/jnen/nlae116","url":null,"abstract":"","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142576276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sonal Sukreet, Vanessa S Goodwill, Jennifer Ngolab, Ha Y Kim, Solana Leisher, Sahar Salehi, Michael S Rafii, Annie Hiniker, Robert A Rissman
{"title":"Clinical and neuropathological analysis of Down syndrome over 7 decades of life.","authors":"Sonal Sukreet, Vanessa S Goodwill, Jennifer Ngolab, Ha Y Kim, Solana Leisher, Sahar Salehi, Michael S Rafii, Annie Hiniker, Robert A Rissman","doi":"10.1093/jnen/nlae110","DOIUrl":"https://doi.org/10.1093/jnen/nlae110","url":null,"abstract":"","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142546061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rita Machaalani, Michael Rodriguez, Arunnjah Vivekanandarajah
The prevalence of focal granule cell bilamination (FGCB) in the hippocampal dentate gyrus varies from 0% to 44%, depending on age and study population. FGCB is commonly thought to be a specific feature of temporal lobe epilepsy (TLE) but its prevalence in cases without TLE is unclear. Using formalin-fixed, paraffin-embedded hippocampal sections, this retrospective postmortem study evaluated the prevalence of FGCB and other granule cell pathologies in infants (1-12 months of age, n = 16), children (4-10 years, n = 6), and adults (28-91 years, n = 15) with no known history of epilepsy or seizures. We found FGCB in 6% of infants, 17% of children, and 27% of adults. We then compared our findings with those in published reports of sudden unexpected deaths in infancy (SUDI), childhood (SUDC), and epilepsy (SUDEP), and in surgical specimens from patients with TLE. The reported prevalence of FGCB in those studies was 6%-19% in infants, 0%-17% in children, and 0%-2% in adults in non-seizure-related cases and 9% in children and 3%-25% in adults with TLE. Our findings highlight the presence of FGCB in individuals with no known epilepsy/seizure-related histories in proportions similar to those reported in individuals with clinical epilepsy.
{"title":"Focal granule cell bilamination of the dentate gyrus-its prevalence across the human age spectrum and review of the literature.","authors":"Rita Machaalani, Michael Rodriguez, Arunnjah Vivekanandarajah","doi":"10.1093/jnen/nlae109","DOIUrl":"https://doi.org/10.1093/jnen/nlae109","url":null,"abstract":"<p><p>The prevalence of focal granule cell bilamination (FGCB) in the hippocampal dentate gyrus varies from 0% to 44%, depending on age and study population. FGCB is commonly thought to be a specific feature of temporal lobe epilepsy (TLE) but its prevalence in cases without TLE is unclear. Using formalin-fixed, paraffin-embedded hippocampal sections, this retrospective postmortem study evaluated the prevalence of FGCB and other granule cell pathologies in infants (1-12 months of age, n = 16), children (4-10 years, n = 6), and adults (28-91 years, n = 15) with no known history of epilepsy or seizures. We found FGCB in 6% of infants, 17% of children, and 27% of adults. We then compared our findings with those in published reports of sudden unexpected deaths in infancy (SUDI), childhood (SUDC), and epilepsy (SUDEP), and in surgical specimens from patients with TLE. The reported prevalence of FGCB in those studies was 6%-19% in infants, 0%-17% in children, and 0%-2% in adults in non-seizure-related cases and 9% in children and 3%-25% in adults with TLE. Our findings highlight the presence of FGCB in individuals with no known epilepsy/seizure-related histories in proportions similar to those reported in individuals with clinical epilepsy.</p>","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142522195","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Tian, Si Chen, Bohan Zhang, Chao Li, Ning Yang, Yongfeng Liang, Yiming Liu
{"title":"Efficacy of deep brain stimulation for neuronal intranuclear inclusion disease tremor-dominant subtype.","authors":"Min Tian, Si Chen, Bohan Zhang, Chao Li, Ning Yang, Yongfeng Liang, Yiming Liu","doi":"10.1093/jnen/nlae111","DOIUrl":"https://doi.org/10.1093/jnen/nlae111","url":null,"abstract":"","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This review discusses terminology recently proposed for the classification of dementia and, more specifically, nosology related to aging-associated TDP-43 pathology: limbic-predominant age-related TDP-43 encephalopathy (LATE), and limbic-predominant amnestic neurodegenerative syndrome (LANS). While the "gold standard" for these clinical conditions is still LATE neuropathologic changes (LATE-NC), clinical criteria and biomarkers are evolving. The newly proposed clinical rubrics are discussed with emphasis on the need for terminology that acknowledges the distinctions between clinical syndrome-, molecular biomarker-, and pathologically defined disease concepts. As further progress is made on research into the specific biomarker-based detection and prediction of TDP-43 proteinopathy in the clinical setting, the definitions of "Probable" and "Possible" LATE are likely to become more useful clinically. For people interested in the pathological diagnoses or basic research related to LATE-NC, the relevant terminology remains unchanged by the newly proposed clinical criteria.
{"title":"New criteria to predict LATE-NC in the clinical setting: Probable/Possible LATE and LANS.","authors":"Peter T Nelson","doi":"10.1093/jnen/nlae113","DOIUrl":"https://doi.org/10.1093/jnen/nlae113","url":null,"abstract":"<p><p>This review discusses terminology recently proposed for the classification of dementia and, more specifically, nosology related to aging-associated TDP-43 pathology: limbic-predominant age-related TDP-43 encephalopathy (LATE), and limbic-predominant amnestic neurodegenerative syndrome (LANS). While the \"gold standard\" for these clinical conditions is still LATE neuropathologic changes (LATE-NC), clinical criteria and biomarkers are evolving. The newly proposed clinical rubrics are discussed with emphasis on the need for terminology that acknowledges the distinctions between clinical syndrome-, molecular biomarker-, and pathologically defined disease concepts. As further progress is made on research into the specific biomarker-based detection and prediction of TDP-43 proteinopathy in the clinical setting, the definitions of \"Probable\" and \"Possible\" LATE are likely to become more useful clinically. For people interested in the pathological diagnoses or basic research related to LATE-NC, the relevant terminology remains unchanged by the newly proposed clinical criteria.</p>","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neuropathic pain arises as a consequence of injury or disease in the peripheral or central nervous system. Clinical cases have shown that spine postoperative chronic neuropathic pain remains a troublesome issue in medical treatment due to the presence of various degrees of peridural fibrosis and different inflammatory factors after spinal surgery. To address this issue, we developed a new neuropathic mice model that successfully simulates the real clinical situation by applying oxidative regenerative cellulose to L5 DRG (dorsal root ganglion). Behavior tests were done by von Fray and thermal stimuli. ELISA and real-time PCR were employed to detect the expression of genes involved in neuropathic pain. This model not only successfully induces chronic pain but also causes membrane thickening, non-neuronal cell recruitment, and a local increase of TNFα and interleukin-6. Additionally, this model did not cause neuron loss in the affected DRG, which mimics the characteristics of sticky tissue-induced neuropathic pain after clinic surgery. Based on this model, we administrated a TNF inhibitor to mice and successfully reduced mechanical allodynia after DRG surgery. In this study, the developed animal model may be a novel platform for delivering neuropathic pain treatments, such as target-based drug discovery or personalized diagnostic approaches.
{"title":"Animal neuropathic pain aroused by conglutinating oxidative regenerative cellulose on dorsal root ganglion.","authors":"Chia-Chi Kung, Shih-Ping Dai, Cheng-Han Yen, Yi-Jui Lee, Shih-Lun Chang, Yi-Ting Fang, Heng-Liang Lin, Chih-Li Chen","doi":"10.1093/jnen/nlae112","DOIUrl":"https://doi.org/10.1093/jnen/nlae112","url":null,"abstract":"<p><p>Neuropathic pain arises as a consequence of injury or disease in the peripheral or central nervous system. Clinical cases have shown that spine postoperative chronic neuropathic pain remains a troublesome issue in medical treatment due to the presence of various degrees of peridural fibrosis and different inflammatory factors after spinal surgery. To address this issue, we developed a new neuropathic mice model that successfully simulates the real clinical situation by applying oxidative regenerative cellulose to L5 DRG (dorsal root ganglion). Behavior tests were done by von Fray and thermal stimuli. ELISA and real-time PCR were employed to detect the expression of genes involved in neuropathic pain. This model not only successfully induces chronic pain but also causes membrane thickening, non-neuronal cell recruitment, and a local increase of TNFα and interleukin-6. Additionally, this model did not cause neuron loss in the affected DRG, which mimics the characteristics of sticky tissue-induced neuropathic pain after clinic surgery. Based on this model, we administrated a TNF inhibitor to mice and successfully reduced mechanical allodynia after DRG surgery. In this study, the developed animal model may be a novel platform for delivering neuropathic pain treatments, such as target-based drug discovery or personalized diagnostic approaches.</p>","PeriodicalId":16682,"journal":{"name":"Journal of Neuropathology and Experimental Neurology","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142516495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}