Reproductive Biology of Trichopria anastrephae (Hymenoptera: Diapriidae), a Biological Control Agent of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae).
Alexandra P Krüger, Amanda M Garcez, Tiago Scheunemann, Daniel Bernardi, Dori E Nava, Flávio R M Garcia
{"title":"Reproductive Biology of Trichopria anastrephae (Hymenoptera: Diapriidae), a Biological Control Agent of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae).","authors":"Alexandra P Krüger, Amanda M Garcez, Tiago Scheunemann, Daniel Bernardi, Dori E Nava, Flávio R M Garcia","doi":"10.1007/s13744-023-01103-8","DOIUrl":null,"url":null,"abstract":"<p><p>Hymenopteran parasitoids, like any other insect, employ strategies to ensure their reproduction. Understanding these strategies is important for ecological purposes, but also to improve mass rearing of biological control agents. Here, we describe mating strategies used by the pupal parasitoid Trichopria anastrephae Lima (Hymenoptera: Diapriidae), a potential biocontrol agent, that has been considered for augmentative releases for management of the invasive pest species Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). We studied the emergence pattern of males and females of T. anastrephae and the effects of parental ae on offspring number and sex ratio. Polygamy was also studied and its effects on parasitism and offspring production were described. Adults from this species emerge in the first hours of photophase, and males emerge before females, demonstrating that T. anastrephae is a protandrous species. Parasitoid age when first mated influences the parasitism and sex ratio. Younger females result in a higher number of offspring (8.16 parasitoids/day), while older males result in a more female-biased sex ratio of offspring (64% females). Both males and females are polygamic, and the order in which a female is mated by the male affects parasitism, viability of parasitized pupae, and sex ratio of offspring, with the first female performing the highest parasitism and sex ratio (63.83 and 61% of females, respectively), but the lowest viability (92.92%). Females that are allowed to mate multiple times generate lower numbers of offspring (113.05 parasitoids) when compared to virgin or single-mated females (135.20 and 130.70 parasitoids, respectively), but the highest sex ratio (49% of females). Data present in this study and how it can be used to improve parasitoid rearing and field releases of T. anastrephae, in biological control programs for D. suzukii are discussed.</p>","PeriodicalId":19071,"journal":{"name":"Neotropical Entomology","volume":" ","pages":"38-46"},"PeriodicalIF":1.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neotropical Entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s13744-023-01103-8","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/11/30 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hymenopteran parasitoids, like any other insect, employ strategies to ensure their reproduction. Understanding these strategies is important for ecological purposes, but also to improve mass rearing of biological control agents. Here, we describe mating strategies used by the pupal parasitoid Trichopria anastrephae Lima (Hymenoptera: Diapriidae), a potential biocontrol agent, that has been considered for augmentative releases for management of the invasive pest species Drosophila suzukii (Matsumura) (Diptera: Drosophilidae). We studied the emergence pattern of males and females of T. anastrephae and the effects of parental ae on offspring number and sex ratio. Polygamy was also studied and its effects on parasitism and offspring production were described. Adults from this species emerge in the first hours of photophase, and males emerge before females, demonstrating that T. anastrephae is a protandrous species. Parasitoid age when first mated influences the parasitism and sex ratio. Younger females result in a higher number of offspring (8.16 parasitoids/day), while older males result in a more female-biased sex ratio of offspring (64% females). Both males and females are polygamic, and the order in which a female is mated by the male affects parasitism, viability of parasitized pupae, and sex ratio of offspring, with the first female performing the highest parasitism and sex ratio (63.83 and 61% of females, respectively), but the lowest viability (92.92%). Females that are allowed to mate multiple times generate lower numbers of offspring (113.05 parasitoids) when compared to virgin or single-mated females (135.20 and 130.70 parasitoids, respectively), but the highest sex ratio (49% of females). Data present in this study and how it can be used to improve parasitoid rearing and field releases of T. anastrephae, in biological control programs for D. suzukii are discussed.
期刊介绍:
Neotropical Entomology is a bimonthly journal, edited by the Sociedade Entomológica do Brasil (Entomological Society of Brazil) that publishes original articles produced by Brazilian and international experts in several subspecialties of entomology. These include bionomics, systematics, morphology, physiology, behavior, ecology, biological control, crop protection and acarology.