Epigenetic changes induced by pathogenic Chlamydia spp.

IF 2.7 4区 医学 Q3 IMMUNOLOGY Pathogens and disease Pub Date : 2023-01-17 DOI:10.1093/femspd/ftad034
Richard A Stein, Lily M Thompson
{"title":"Epigenetic changes induced by pathogenic Chlamydia spp.","authors":"Richard A Stein, Lily M Thompson","doi":"10.1093/femspd/ftad034","DOIUrl":null,"url":null,"abstract":"<p><p>Chlamydia trachomatis, C. pneumoniae, and C. psittaci, the three Chlamydia species known to cause human disease, have been collectively linked to several pathologies, including conjunctivitis, trachoma, respiratory disease, acute and chronic urogenital infections and their complications, and psittacosis. In vitro, animal, and human studies also established additional correlations, such as between C. pneumoniae and atherosclerosis and between C. trachomatis and ovarian cancer. As part of their survival and pathogenesis strategies as obligate intracellular bacteria, Chlamydia spp. modulate all three major types of epigenetic changes, which include deoxyribonucleic acid (DNA) methylation, histone post-translational modifications, and microRNA-mediated gene silencing. Some of these epigenetic changes may be implicated in key aspects of pathogenesis, such as the ability of the Chlamydia spp. to induce epithelial-to-mesenchymal transition, interfere with DNA damage repair, suppress cholesterol efflux from infected macrophages, act as a co-factor in human papillomavirus (HPV)-mediated cervical cancer, prevent apoptosis, and preserve the integrity of mitochondrial networks in infected host cells. A better understanding of the individual and collective contribution of epigenetic changes to pathogenesis will enhance our knowledge about the biology of Chlamydia spp. and facilitate the development of novel therapies and biomarkers. Pathogenic Chlamydia spp. contribute to epigenetically-mediated gene expression changes in host cells by multiple mechanisms.</p>","PeriodicalId":19795,"journal":{"name":"Pathogens and disease","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathogens and disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/femspd/ftad034","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chlamydia trachomatis, C. pneumoniae, and C. psittaci, the three Chlamydia species known to cause human disease, have been collectively linked to several pathologies, including conjunctivitis, trachoma, respiratory disease, acute and chronic urogenital infections and their complications, and psittacosis. In vitro, animal, and human studies also established additional correlations, such as between C. pneumoniae and atherosclerosis and between C. trachomatis and ovarian cancer. As part of their survival and pathogenesis strategies as obligate intracellular bacteria, Chlamydia spp. modulate all three major types of epigenetic changes, which include deoxyribonucleic acid (DNA) methylation, histone post-translational modifications, and microRNA-mediated gene silencing. Some of these epigenetic changes may be implicated in key aspects of pathogenesis, such as the ability of the Chlamydia spp. to induce epithelial-to-mesenchymal transition, interfere with DNA damage repair, suppress cholesterol efflux from infected macrophages, act as a co-factor in human papillomavirus (HPV)-mediated cervical cancer, prevent apoptosis, and preserve the integrity of mitochondrial networks in infected host cells. A better understanding of the individual and collective contribution of epigenetic changes to pathogenesis will enhance our knowledge about the biology of Chlamydia spp. and facilitate the development of novel therapies and biomarkers. Pathogenic Chlamydia spp. contribute to epigenetically-mediated gene expression changes in host cells by multiple mechanisms.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
致病性衣原体诱导的表观遗传变化。
沙眼衣原体、肺炎衣原体和鹦鹉热衣原体是已知引起人类疾病的三种衣原体,它们共同与几种疾病有关,包括结膜炎、沙眼、呼吸道疾病、急性和慢性泌尿生殖系统感染及其并发症以及鹦鹉热。体外、动物和人体研究也建立了更多的相关性,例如肺炎衣原体与动脉粥样硬化之间以及沙眼衣原体与卵巢癌之间的相关性。衣原体作为专性细胞内细菌的生存和发病策略的一部分,调节所有三种主要类型的表观遗传变化,包括DNA甲基化,组蛋白翻译后修饰和微rna介导的基因沉默。其中一些表观遗传变化可能与发病机制的关键方面有关,如衣原体诱导上皮-间质转化、干扰DNA损伤修复、抑制感染巨噬细胞的胆固醇外排、在hpv介导的宫颈癌中作为辅助因子、防止细胞凋亡和保持感染宿主细胞线粒体网络的完整性。更好地了解表观遗传变化对衣原体发病机制的个体和集体贡献将提高我们对衣原体生物学的认识,并促进新疗法和生物标志物的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pathogens and disease
Pathogens and disease IMMUNOLOGY-INFECTIOUS DISEASES
CiteScore
7.40
自引率
3.00%
发文量
44
期刊介绍: Pathogens and Disease publishes outstanding primary research on hypothesis- and discovery-driven studies on pathogens, host-pathogen interactions, host response to infection and their molecular and cellular correlates. It covers all pathogens – eukaryotes, prokaryotes, and viruses – and includes zoonotic pathogens and experimental translational applications.
期刊最新文献
Characterization of bacteriophage vB_AbaS_SA1 and its synergistic effects with antibiotics against clinical multidrug-resistant Acinetobacter baumannii isolates. CRISPR/Cas9-Edited Duck Enteritis Virus expressing Pmp17G of Chlamydia psittaci Induced Protective Immunity in Ducking. Uropathogenic Escherichia coli causes significant urothelial damage in an ex vivo porcine bladder model, with no protective effect observed from cranberry or D-mannose. Differential patterns of antibody response against SARS-CoV-2 nucleocapsid epitopes detected in sera from patients in acute phase of COVID-19, convalescents and pre-pandemic individuals. Mechanisms that potentially contribute to the development of post-streptococcal glomerulonephritis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1