Craig R. Aitken , Girish Pathangey , Mathew Stamos , Chul-Ho Kim , Bruce D. Johnson , Glenn M. Stewart
{"title":"Reproducibility and responsiveness of airway impedance measures derived from the forced oscillation technique across different operating lung volumes","authors":"Craig R. Aitken , Girish Pathangey , Mathew Stamos , Chul-Ho Kim , Bruce D. Johnson , Glenn M. Stewart","doi":"10.1016/j.resp.2023.104200","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The forced oscillation technique (FOT) enables non-invasive measurement of respiratory system impedance. Limited data exists on how changes in operating lung volume (OLV) impact FOT-derived measures of airway resistance (Rrs) and reactance (Xrs).</p></div><div><h3>Objectives</h3><p>This study examined the reproducibility and responsiveness of FOT-derived measures of Rrs and Xrs during simulated changes in OLV.</p></div><div><h3>Methods</h3><p>Participants simulated breathing at six OLVs: total lung capacity (TLC), ∼50% of inspiratory reserve volume (IRV<sub>50</sub>), ∼two-times tidal volume (VT<sub>2</sub>), tidal volume (VT), ∼50% of expiratory reserve volume (ERV<sub>50</sub>), and residual volume (RV), on a commercially available FOT device. Each simulated OLV manuever was performed in triplicate and in random order. Total Rrs and Xrs were recorded at 5, 11, and 19 Hz.</p></div><div><h3>Results</h3><p>Twelve healthy participants (2 female) completed the study (weight: 76.5 ± 13.6 kg, height: 178.6 ± 9.7 cm, body mass index: 23.9 ± 3.1 kg/m<sup>2</sup>). Reproducibility of Rrs and Xrs at VT, VT<sub>2</sub> and IRV<sub>50</sub> was good to excellent (Range: ICC: 0.89–0.98, 95% confidence interval (CI): 0.70–0.98), while reproducibility at TLC, RV, and ERV<sub>50</sub> was poor to excellent (Range: ICC: 0.60–0.98, 95% CI: 0.36–0.97). Rrs and Xrs were not different between VT and VT<sub>2</sub> at any frequency (<em>P</em> > .05). With lung hyperinflation from VT to TLC, Rrs and Xrs decreased at all three frequencies (e.g., At 5 Hz Rrs: mean difference (MD): − 0.89, 95%CI: − 0.03 to − 1.75, <em>P</em> = .04; Xrs: MD: − 0.56, 95%CI: − 0.25 to − 0.86, <em>P</em> < .01). With lung hypoinflated from VT to RV, Rrs increased, and Xrs decreased for all frequencies (e.g., MD at 5 Hz, Rrs: MD: 2.31, 95%CI: 0.94–3.67, <em>P</em> < .01; Xrs: MD: −2.53, 95%CI: −4.02 to −1.04, <em>P</em> < .01).</p></div><div><h3>Conclusion</h3><p>FOT-derived measures of airway Rrs and Xrs are reproducible across a range of OLV’s, and are responsive to hyper- and hypo-inflation of the lung. To further understand the impact of lung hyper- and hypo-inflation on FOT-derived airway impedance additional study is required in individuals with pathological variations in operating lung volume.</p></div>","PeriodicalId":20961,"journal":{"name":"Respiratory Physiology & Neurobiology","volume":"320 ","pages":"Article 104200"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S156990482300188X/pdfft?md5=7d0891985bf465877d1164d80ae90fc7&pid=1-s2.0-S156990482300188X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Physiology & Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156990482300188X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The forced oscillation technique (FOT) enables non-invasive measurement of respiratory system impedance. Limited data exists on how changes in operating lung volume (OLV) impact FOT-derived measures of airway resistance (Rrs) and reactance (Xrs).
Objectives
This study examined the reproducibility and responsiveness of FOT-derived measures of Rrs and Xrs during simulated changes in OLV.
Methods
Participants simulated breathing at six OLVs: total lung capacity (TLC), ∼50% of inspiratory reserve volume (IRV50), ∼two-times tidal volume (VT2), tidal volume (VT), ∼50% of expiratory reserve volume (ERV50), and residual volume (RV), on a commercially available FOT device. Each simulated OLV manuever was performed in triplicate and in random order. Total Rrs and Xrs were recorded at 5, 11, and 19 Hz.
Results
Twelve healthy participants (2 female) completed the study (weight: 76.5 ± 13.6 kg, height: 178.6 ± 9.7 cm, body mass index: 23.9 ± 3.1 kg/m2). Reproducibility of Rrs and Xrs at VT, VT2 and IRV50 was good to excellent (Range: ICC: 0.89–0.98, 95% confidence interval (CI): 0.70–0.98), while reproducibility at TLC, RV, and ERV50 was poor to excellent (Range: ICC: 0.60–0.98, 95% CI: 0.36–0.97). Rrs and Xrs were not different between VT and VT2 at any frequency (P > .05). With lung hyperinflation from VT to TLC, Rrs and Xrs decreased at all three frequencies (e.g., At 5 Hz Rrs: mean difference (MD): − 0.89, 95%CI: − 0.03 to − 1.75, P = .04; Xrs: MD: − 0.56, 95%CI: − 0.25 to − 0.86, P < .01). With lung hypoinflated from VT to RV, Rrs increased, and Xrs decreased for all frequencies (e.g., MD at 5 Hz, Rrs: MD: 2.31, 95%CI: 0.94–3.67, P < .01; Xrs: MD: −2.53, 95%CI: −4.02 to −1.04, P < .01).
Conclusion
FOT-derived measures of airway Rrs and Xrs are reproducible across a range of OLV’s, and are responsive to hyper- and hypo-inflation of the lung. To further understand the impact of lung hyper- and hypo-inflation on FOT-derived airway impedance additional study is required in individuals with pathological variations in operating lung volume.
期刊介绍:
Respiratory Physiology & Neurobiology (RESPNB) publishes original articles and invited reviews concerning physiology and pathophysiology of respiration in its broadest sense.
Although a special focus is on topics in neurobiology, high quality papers in respiratory molecular and cellular biology are also welcome, as are high-quality papers in traditional areas, such as:
-Mechanics of breathing-
Gas exchange and acid-base balance-
Respiration at rest and exercise-
Respiration in unusual conditions, like high or low pressure or changes of temperature, low ambient oxygen-
Embryonic and adult respiration-
Comparative respiratory physiology.
Papers on clinical aspects, original methods, as well as theoretical papers are also considered as long as they foster the understanding of respiratory physiology and pathophysiology.