Enhancement of porcine in vitro embryonic development through luteolin-mediated activation of the Nrf2/Keap1 signaling pathway.

IF 6.3 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE Journal of Animal Science and Biotechnology Pub Date : 2023-12-01 DOI:10.1186/s40104-023-00947-9
Se-Been Jeon, Pil-Soo Jeong, Min Ju Kim, Hyo-Gu Kang, Bong-Seok Song, Sun-Uk Kim, Seong-Keun Cho, Bo-Woong Sim
{"title":"Enhancement of porcine in vitro embryonic development through luteolin-mediated activation of the Nrf2/Keap1 signaling pathway.","authors":"Se-Been Jeon, Pil-Soo Jeong, Min Ju Kim, Hyo-Gu Kang, Bong-Seok Song, Sun-Uk Kim, Seong-Keun Cho, Bo-Woong Sim","doi":"10.1186/s40104-023-00947-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Oxidative stress, caused by an imbalance in the production and elimination of intracellular reactive oxygen species (ROS), has been recognized for its detrimental effects on mammalian embryonic development. Luteolin (Lut) has been documented for its protective effects against oxidative stress in various studies. However, its specific role in embryonic development remains unexplored. This study aims to investigate the influence of Lut on porcine embryonic development and to elucidate the underlying mechanism.</p><p><strong>Results: </strong>After undergoing parthenogenetic activation (PA) or in vitro fertilization, embryos supplemented with 0.5 µmol/L Lut displayed a significant enhancement in cleavage and blastocyst formation rates, with an increase in total cell numbers and a decrease in the apoptosis rate compared to the control. Measurements on D2 and D6 revealed that embryos with Lut supplementation had lower ROS levels and higher glutathione levels compared to the control. Moreover, Lut supplementation significantly augmented mitochondrial content and membrane potential. Intriguingly, activation of the Nrf2/Keap1 signaling pathway was observed in embryos supplemented with Lut, leading to the upregulation of antioxidant-related gene transcription levels. To further validate the relationship between the Nrf2/Keap1 signaling pathway and effects of Lut in porcine embryonic development, we cultured PA embryos in a medium supplemented with brusatol, with or without the inclusion of Lut. The positive effects of Lut on developmental competence were negated by brusatol treatment.</p><p><strong>Conclusions: </strong>Our findings indicate that Lut-mediated activation of the Nrf2/Keap1 signaling pathway contributes to the enhanced production of porcine embryos with high developmental competence, and offers insight into the mechanisms regulating early embryonic development.</p>","PeriodicalId":64067,"journal":{"name":"Journal of Animal Science and Biotechnology","volume":"14 1","pages":"148"},"PeriodicalIF":6.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10691000/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Science and Biotechnology","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1186/s40104-023-00947-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Oxidative stress, caused by an imbalance in the production and elimination of intracellular reactive oxygen species (ROS), has been recognized for its detrimental effects on mammalian embryonic development. Luteolin (Lut) has been documented for its protective effects against oxidative stress in various studies. However, its specific role in embryonic development remains unexplored. This study aims to investigate the influence of Lut on porcine embryonic development and to elucidate the underlying mechanism.

Results: After undergoing parthenogenetic activation (PA) or in vitro fertilization, embryos supplemented with 0.5 µmol/L Lut displayed a significant enhancement in cleavage and blastocyst formation rates, with an increase in total cell numbers and a decrease in the apoptosis rate compared to the control. Measurements on D2 and D6 revealed that embryos with Lut supplementation had lower ROS levels and higher glutathione levels compared to the control. Moreover, Lut supplementation significantly augmented mitochondrial content and membrane potential. Intriguingly, activation of the Nrf2/Keap1 signaling pathway was observed in embryos supplemented with Lut, leading to the upregulation of antioxidant-related gene transcription levels. To further validate the relationship between the Nrf2/Keap1 signaling pathway and effects of Lut in porcine embryonic development, we cultured PA embryos in a medium supplemented with brusatol, with or without the inclusion of Lut. The positive effects of Lut on developmental competence were negated by brusatol treatment.

Conclusions: Our findings indicate that Lut-mediated activation of the Nrf2/Keap1 signaling pathway contributes to the enhanced production of porcine embryos with high developmental competence, and offers insight into the mechanisms regulating early embryonic development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过木犀草素介导的Nrf2/Keap1信号通路激活促进猪体外胚胎发育
背景:氧化应激是由细胞内活性氧(ROS)产生和消除的不平衡引起的,它对哺乳动物胚胎发育有不利影响。在各种研究中,木犀草素(Lut)已被证明具有抗氧化应激的保护作用。然而,它在胚胎发育中的具体作用仍未被探索。本研究旨在探讨Lut对猪胚胎发育的影响并阐明其作用机制。结果:经孤雌生殖激活(PA)或体外受精后,与对照组相比,添加0.5µmol/L Lut的胚胎的卵裂率和囊胚形成率显著提高,细胞总数增加,细胞凋亡率降低。D2和D6的测量显示,与对照组相比,补充Lut的胚胎ROS水平较低,谷胱甘肽水平较高。此外,补充Lut显著增加线粒体含量和膜电位。有趣的是,在添加Lut的胚胎中,Nrf2/Keap1信号通路被激活,导致抗氧化相关基因转录水平上调。为了进一步验证Nrf2/Keap1信号通路与Lut在猪胚胎发育中的作用之间的关系,我们在添加brusatol和不添加Lut的培养基中培养PA胚胎。Lut对发育能力的积极作用被brusatol处理所抵消。结论:研究结果表明,lut介导的Nrf2/Keap1信号通路的激活有助于提高猪胚胎的高发育能力,并为早期胚胎发育的调控机制提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
0.00%
发文量
822
期刊最新文献
Impact of probiotics-derived extracellular vesicles on livestock gut barrier function. Dietary supplementation with N-acetyl-L-cysteine ameliorates hyperactivated ERK signaling in the endometrium that is linked to poor pregnancy outcomes following ovarian stimulation in pigs. The assembly and activation of the PANoptosome promote porcine granulosa cell programmed cell death during follicular atresia. Natural plant polyphenols contribute to the ecological and healthy swine production. Embryotrophic effect of exogenous protein contained adipose-derived stem cell extracellular vesicles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1