Comparison of dose and risk estimates between ISS Partner Agencies for a 30-day lunar mission

IF 2.4 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Zeitschrift fur Medizinische Physik Pub Date : 2024-02-01 DOI:10.1016/j.zemedi.2023.10.005
Mark R. Shavers , Edward J. Semones , Vyacheslav Shurshakov , Mikhail Dobynde , Tatsuhiko Sato , Tatsuto Komiyama , Leena Tomi , Jing Chen , Samy El-Jaby , Ulrich Straube , Chunsheng Li , Werner Rühm
{"title":"Comparison of dose and risk estimates between ISS Partner Agencies for a 30-day lunar mission","authors":"Mark R. Shavers ,&nbsp;Edward J. Semones ,&nbsp;Vyacheslav Shurshakov ,&nbsp;Mikhail Dobynde ,&nbsp;Tatsuhiko Sato ,&nbsp;Tatsuto Komiyama ,&nbsp;Leena Tomi ,&nbsp;Jing Chen ,&nbsp;Samy El-Jaby ,&nbsp;Ulrich Straube ,&nbsp;Chunsheng Li ,&nbsp;Werner Rühm","doi":"10.1016/j.zemedi.2023.10.005","DOIUrl":null,"url":null,"abstract":"<div><p>The International Partner Agencies of the International Space Station (ISS) present a comparison of the ionizing radiation absorbed dose and risk quantities used to characterize example missions in lunar space. This effort builds on previous collaborative work that characterizes radiation environments in space to support radiation protection for human spaceflight on ISS in low-Earth orbit (LEO) and exploration missions beyond (BLEO). A “shielded” ubiquitous galactic cosmic radiation (GCR) environment combined with––and separate from––the transient challenge of a solar particle event (SPE) was modelled for a simulated 30-day mission period. Simple geometries of relatively thin and uniform shields were chosen to represent the space vehicle and other available shielding, and male or female phantoms were used to represent the body’s self-shielding. Absorbed dose in organs and tissues and the effective dose were calculated for males and females. Risk parameters for cancer and other outcomes are presented for selected organs. The results of this intracomparison between ISS Partner Agencies itself provide insights to the level of agreement with which space agencies can perform organ dosimetry and calculate effective dose. This work was performed in collaboration with the advisory and guidance efforts of the International Commission on Radiological Protection (ICRP) Task Group 115 and will be presented in an ICRP Report</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"34 1","pages":"Pages 31-43"},"PeriodicalIF":2.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388923001216/pdfft?md5=31f7430d986940c92142e5bd471f10e0&pid=1-s2.0-S0939388923001216-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Medizinische Physik","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939388923001216","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

The International Partner Agencies of the International Space Station (ISS) present a comparison of the ionizing radiation absorbed dose and risk quantities used to characterize example missions in lunar space. This effort builds on previous collaborative work that characterizes radiation environments in space to support radiation protection for human spaceflight on ISS in low-Earth orbit (LEO) and exploration missions beyond (BLEO). A “shielded” ubiquitous galactic cosmic radiation (GCR) environment combined with––and separate from––the transient challenge of a solar particle event (SPE) was modelled for a simulated 30-day mission period. Simple geometries of relatively thin and uniform shields were chosen to represent the space vehicle and other available shielding, and male or female phantoms were used to represent the body’s self-shielding. Absorbed dose in organs and tissues and the effective dose were calculated for males and females. Risk parameters for cancer and other outcomes are presented for selected organs. The results of this intracomparison between ISS Partner Agencies itself provide insights to the level of agreement with which space agencies can perform organ dosimetry and calculate effective dose. This work was performed in collaboration with the advisory and guidance efforts of the International Commission on Radiological Protection (ICRP) Task Group 115 and will be presented in an ICRP Report

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
国际空间站伙伴机构对30天月球任务的剂量和风险评估比较。
国际空间站(国际空间站)的国际伙伴机构提供了电离辐射吸收剂量和风险量的比较,这些电离辐射被用来作为月球空间任务实例的特征。这项工作建立在先前的协作工作的基础上,该工作描述了空间辐射环境的特征,以支持在近地轨道(LEO)的国际空间站上的人类航天飞行和在更远的探索任务(BLEO)上的辐射防护。“屏蔽”无处不在的银河宇宙辐射(GCR)环境与太阳粒子事件(SPE)的瞬态挑战相结合,并与之分离,模拟了30天的模拟任务周期。选择相对薄而均匀的简单几何形状的盾牌来表示空间飞行器和其他可用的屏蔽,并使用男性或女性幽灵来表示身体的自我屏蔽。计算了男性和女性在器官和组织中的吸收剂量和有效剂量。所选器官的癌症和其他结果的风险参数。国际空间站伙伴机构之间的这种内部比较的结果本身提供了对空间机构可以进行器官剂量测定和计算有效剂量的协议水平的见解。这项工作是与国际放射防护委员会(放射防护委员会)第115工作队的咨询和指导工作合作进行的,并将在放射防护委员会报告中提出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
10.00%
发文量
69
审稿时长
65 days
期刊介绍: Zeitschrift fur Medizinische Physik (Journal of Medical Physics) is an official organ of the German and Austrian Society of Medical Physic and the Swiss Society of Radiobiology and Medical Physics.The Journal is a platform for basic research and practical applications of physical procedures in medical diagnostics and therapy. The articles are reviewed following international standards of peer reviewing. Focuses of the articles are: -Biophysical methods in radiation therapy and nuclear medicine -Dosimetry and radiation protection -Radiological diagnostics and quality assurance -Modern imaging techniques, such as computed tomography, magnetic resonance imaging, positron emission tomography -Ultrasonography diagnostics, application of laser and UV rays -Electronic processing of biosignals -Artificial intelligence and machine learning in medical physics In the Journal, the latest scientific insights find their expression in the form of original articles, reviews, technical communications, and information for the clinical practice.
期刊最新文献
Editorial Board Contents Source-detector trajectory optimization for CBCT metal artifact reduction based on PICCS reconstruction Reduction of patient specific quality assurance through plan complexity metrics for VMAT plans with an open-source TPS script Post-mastectomy radiotherapy: Impact of bolus thickness and irradiation technique on skin dose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1