Rhi3DGen: Analyzing Rhinophyma using 3D face models and synthetic data

Anwesha Mohanty, Alistair Sutherland, Marija Bezbradica, Hossein Javidnia
{"title":"Rhi3DGen: Analyzing Rhinophyma using 3D face models and synthetic data","authors":"Anwesha Mohanty,&nbsp;Alistair Sutherland,&nbsp;Marija Bezbradica,&nbsp;Hossein Javidnia","doi":"10.1016/j.ibmed.2023.100124","DOIUrl":null,"url":null,"abstract":"<div><p>Within the realm of medical diagnosis, deep learning techniques have revolutionized the way diseases are identified and studied. However, a persistent challenge has been data scarcity for many disease categories. One primary reason for this is issues related to patient privacy and copyright constraints on medical datasets. To address this, our research explores the use of synthetic data generation, focusing on <em>Rhinophyma</em>, a subclass of Rosacea. Our novel approach uses 3D parametric modeling to create synthetic images of <em>Rhinophyma</em>, addressing the data scarcity problem. Through this method, we generated 20,000 images representing 2000 distinct anatomical deformations of <em>Rhinophyma</em>. This research not only showcases the potential of using 3D parametric modeling for <em>Rhinophyma</em> but hints at its applicability for other diseases with anatomical abnormalities. With just 30 % of this synthetic dataset, we achieved a remarkable 95 % recall in classifying 220 real-world <em>Rhinophyma</em> images. The performance of our classification model is further validated using GradCAM visualisation. Our findings underscore the potential of such techniques to propel medical research and develop superior deep learning diagnostic models when only limited real-world images are available.</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"8 ","pages":"Article 100124"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666521223000388/pdfft?md5=7db4c86694fa7c487ae887d65e0fc36c&pid=1-s2.0-S2666521223000388-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521223000388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Within the realm of medical diagnosis, deep learning techniques have revolutionized the way diseases are identified and studied. However, a persistent challenge has been data scarcity for many disease categories. One primary reason for this is issues related to patient privacy and copyright constraints on medical datasets. To address this, our research explores the use of synthetic data generation, focusing on Rhinophyma, a subclass of Rosacea. Our novel approach uses 3D parametric modeling to create synthetic images of Rhinophyma, addressing the data scarcity problem. Through this method, we generated 20,000 images representing 2000 distinct anatomical deformations of Rhinophyma. This research not only showcases the potential of using 3D parametric modeling for Rhinophyma but hints at its applicability for other diseases with anatomical abnormalities. With just 30 % of this synthetic dataset, we achieved a remarkable 95 % recall in classifying 220 real-world Rhinophyma images. The performance of our classification model is further validated using GradCAM visualisation. Our findings underscore the potential of such techniques to propel medical research and develop superior deep learning diagnostic models when only limited real-world images are available.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rhi3DGen:利用三维人脸模型和合成数据分析鼻肿
在医学诊断领域,深度学习技术已经彻底改变了疾病的识别和研究方式。然而,许多疾病类别的数据短缺一直是一个持续的挑战。其中一个主要原因是与患者隐私和医疗数据集的版权限制有关的问题。为了解决这个问题,我们的研究探索了合成数据生成的使用,重点是鼻癣,酒渣鼻的一个亚类。我们的新方法使用3D参数化建模来创建犀牛的合成图像,解决了数据稀缺问题。通过这种方法,我们生成了20000张图像,代表了2000种不同的鼻肿解剖变形。本研究不仅展示了使用三维参数化建模鼻瘤的潜力,而且暗示其适用于其他具有解剖异常的疾病。仅使用该合成数据集的30%,我们就在220张真实世界的鼻虫图像中实现了95%的召回率。使用GradCAM可视化进一步验证了我们的分类模型的性能。我们的研究结果强调了这些技术在推动医学研究和开发卓越的深度学习诊断模型方面的潜力,当只有有限的真实图像可用时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
期刊最新文献
Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Automatic characterization of cerebral MRI images for the detection of autism spectrum disorders DOTnet 2.0: Deep learning network for diffuse optical tomography image reconstruction Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Clustering polycystic ovary syndrome laboratory results extracted from a large internet forum with machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1