首页 > 最新文献

Intelligence-based medicine最新文献

英文 中文
Using big data to predict young adult ischemic vs. non-ischemic heart disease risk factors: An artificial intelligence based model
Pub Date : 2025-01-01 DOI: 10.1016/j.ibmed.2025.100207
Salam Bani Hani , Muayyad Ahmad
{"title":"Using big data to predict young adult ischemic vs. non-ischemic heart disease risk factors: An artificial intelligence based model","authors":"Salam Bani Hani , Muayyad Ahmad","doi":"10.1016/j.ibmed.2025.100207","DOIUrl":"10.1016/j.ibmed.2025.100207","url":null,"abstract":"","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100207"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143173634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Open-source small language models for personal medical assistant chatbots
Pub Date : 2025-01-01 DOI: 10.1016/j.ibmed.2024.100197
Matteo Magnini , Gianluca Aguzzi , Sara Montagna
Medical chatbots are becoming essential components of telemedicine applications as tools to assist patients in the self-management of their conditions. This trend is particularly driven by advancements in natural language processing techniques with pre-trained language models (LMs). However, the integration of LMs into clinical environments faces challenges related to reliability and privacy concerns.
This study seeks to address these issues by exploiting a privacy by design architectural solution that utilises the fully local deployment of open-source LMs. Specifically, to mitigate any risk of information leakage, we focus on evaluating the performance of open-source language models (SLMs) that can be deployed on personal devices, such as smartphones or laptops, without stringent hardware requirements.
We assess the effectiveness of this solution adopting hypertension management as a case study. Models are evaluated across various tasks, including intent recognition and empathetic conversation, using Gemini Pro 1.5 as a benchmark. The results indicate that, for certain tasks such as intent recognition, Gemini outperforms other models. However, by employing the “large language model (LLM) as a judge” approach for semantic evaluation of response correctness, we found several models that demonstrate a close alignment with the ground truth. In conclusion, this study highlights the potential of locally deployed SLMs as components of medical chatbots, while addressing critical concerns related to privacy and reliability.
{"title":"Open-source small language models for personal medical assistant chatbots","authors":"Matteo Magnini ,&nbsp;Gianluca Aguzzi ,&nbsp;Sara Montagna","doi":"10.1016/j.ibmed.2024.100197","DOIUrl":"10.1016/j.ibmed.2024.100197","url":null,"abstract":"<div><div>Medical chatbots are becoming essential components of telemedicine applications as tools to assist patients in the self-management of their conditions. This trend is particularly driven by advancements in natural language processing techniques with pre-trained language models (LMs). However, the integration of LMs into clinical environments faces challenges related to reliability and privacy concerns.</div><div>This study seeks to address these issues by exploiting a <em>privacy by design</em> architectural solution that utilises the fully local deployment of open-source LMs. Specifically, to mitigate any risk of information leakage, we focus on evaluating the performance of open-source language models (SLMs) that can be deployed on personal devices, such as smartphones or laptops, without stringent hardware requirements.</div><div>We assess the effectiveness of this solution adopting hypertension management as a case study. Models are evaluated across various tasks, including intent recognition and empathetic conversation, using Gemini Pro 1.5 as a benchmark. The results indicate that, for certain tasks such as intent recognition, Gemini outperforms other models. However, by employing the “large language model (LLM) as a judge” approach for semantic evaluation of response correctness, we found several models that demonstrate a close alignment with the ground truth. In conclusion, this study highlights the potential of locally deployed SLMs as components of medical chatbots, while addressing critical concerns related to privacy and reliability.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100197"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143173635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and validation of a moderate aortic stenosis disease progression model
Pub Date : 2025-01-01 DOI: 10.1016/j.ibmed.2025.100201
Miguel R. Sotelo , Paul Nona , Loren Wagner , Chris Rogers , Julian Booker , Efstathia Andrikopoulou

Background

Understanding the multifactorial determinants of rapid progression in patients with aortic stenosis (AS) remains limited. We aimed to develop and validate a machine learning model (ML) for predicting rapid progression from moderate to severe AS within one year.

Methods

8746 patients were identified with moderate AS across seven healthcare organizations. Three ML models were trained using demographic, and echocardiographic variables, namely Random Forest, XGBoost and causal discovery-logistic regression. An ensemble model was developed integrating the aforementioned three. A total of 3355 patients formed the training and internal validation cohort. External validation was performed on 171 patients from one institution.

Results

An ensemble model was selected due to its superior F1 score and precision in internal validation (0.382 and 0.301, respectively). Its performance on the external validation cohort was modest (F1 score = 0.626, precision = 0.532).

Conclusion

An ensemble model comprising only demographic and echocardiographic variables was shown to have modest performance in predicting one-year progression from moderate to severe AS. Further validation in larger populations, along with integration of comprehensive clinical data, is crucial for broader applicability.
{"title":"Development and validation of a moderate aortic stenosis disease progression model","authors":"Miguel R. Sotelo ,&nbsp;Paul Nona ,&nbsp;Loren Wagner ,&nbsp;Chris Rogers ,&nbsp;Julian Booker ,&nbsp;Efstathia Andrikopoulou","doi":"10.1016/j.ibmed.2025.100201","DOIUrl":"10.1016/j.ibmed.2025.100201","url":null,"abstract":"<div><h3>Background</h3><div>Understanding the multifactorial determinants of rapid progression in patients with aortic stenosis (AS) remains limited. We aimed to develop and validate a machine learning model (ML) for predicting rapid progression from moderate to severe AS within one year.</div></div><div><h3>Methods</h3><div>8746 patients were identified with moderate AS across seven healthcare organizations. Three ML models were trained using demographic, and echocardiographic variables, namely Random Forest, XGBoost and causal discovery-logistic regression. An ensemble model was developed integrating the aforementioned three. A total of 3355 patients formed the training and internal validation cohort. External validation was performed on 171 patients from one institution.</div></div><div><h3>Results</h3><div>An ensemble model was selected due to its superior F1 score and precision in internal validation (0.382 and 0.301, respectively). Its performance on the external validation cohort was modest (F1 score = 0.626, precision = 0.532).</div></div><div><h3>Conclusion</h3><div>An ensemble model comprising only demographic and echocardiographic variables was shown to have modest performance in predicting one-year progression from moderate to severe AS. Further validation in larger populations, along with integration of comprehensive clinical data, is crucial for broader applicability.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100201"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143174355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Using convolutional network in graphical model detection of autism disorders with fuzzy inference systems
Pub Date : 2025-01-01 DOI: 10.1016/j.ibmed.2025.100213
S. Rajaprakash , C. Bagath Basha , C. Sunitha Ram , I. Ameethbasha , V. Subapriya , R. Sofia
Autism spectrum disorder (ASD) study faces several challenges, including variations in brain connectivity patterns, small sample sizes, and data heterogeneity detection by magnetic resonance imaging (MRI). These issues make it challenging to identify consistent imaging modalities. Researchers have explored improved analysis techniques to solve the above problem via multimodal imaging and graph-based methods. Therefore, it is better to understand ASD neurology. The current techniques focus mainly on pairwise comparisons between individuals and often overlook features and individual characteristics. To overcome these limitations, in the proposed novel method, a multiscale enhanced graph with a convolutional network is used for ASD detection.
This work integrates non-imaging phenotypic data (from brain imaging data) with functional connectivity data (from Functional magnetic resonance images). In this approach, the population graph represents all individuals as vertices. The phenotypic data were used to calculate the weight between vertices in the graph using the fuzzy inference system. Fuzzy if-then rules, is used to determine the similarity between the phenotypic data. Each vertice connects feature vectors derived from the image data. The vertices and weights of each edge are used to incorporate phenotypic information. A random walk with a fuzzy MSE-GCN framework employs multiple parallel GCN layer embeddings. The outputs from these layers are joined in a completely linked layer to detect ASD efficiently. We assessed the performance of this background by the ABIDE data set and utilized recursive feature elimination and a multilayer perceptron for feature selection. This method achieved an accuracy rate of 87 % better than the current study.
{"title":"Using convolutional network in graphical model detection of autism disorders with fuzzy inference systems","authors":"S. Rajaprakash ,&nbsp;C. Bagath Basha ,&nbsp;C. Sunitha Ram ,&nbsp;I. Ameethbasha ,&nbsp;V. Subapriya ,&nbsp;R. Sofia","doi":"10.1016/j.ibmed.2025.100213","DOIUrl":"10.1016/j.ibmed.2025.100213","url":null,"abstract":"<div><div>Autism spectrum disorder (ASD) study faces several challenges, including variations in brain connectivity patterns, small sample sizes, and data heterogeneity detection by magnetic resonance imaging (MRI). These issues make it challenging to identify consistent imaging modalities. Researchers have explored improved analysis techniques to solve the above problem via multimodal imaging and graph-based methods. Therefore, it is better to understand ASD neurology. The current techniques focus mainly on pairwise comparisons between individuals and often overlook features and individual characteristics. To overcome these limitations, in the proposed novel method, a multiscale enhanced graph with a convolutional network is used for ASD detection.</div><div>This work integrates non-imaging phenotypic data (from brain imaging data) with functional connectivity data (from Functional magnetic resonance images). In this approach, the population graph represents all individuals as vertices. The phenotypic data were used to calculate the weight between vertices in the graph using the fuzzy inference system. Fuzzy if-then rules, is used to determine the similarity between the phenotypic data. Each vertice connects feature vectors derived from the image data. The vertices and weights of each edge are used to incorporate phenotypic information. A random walk with a fuzzy MSE-GCN framework employs multiple parallel GCN layer embeddings. The outputs from these layers are joined in a completely linked layer to detect ASD efficiently. We assessed the performance of this background by the ABIDE data set and utilized recursive feature elimination and a multilayer perceptron for feature selection. This method achieved an accuracy rate of 87 % better than the current study.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100213"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143350535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving CNN interpretability and evaluation via alternating training and regularization in chest CT scans
Pub Date : 2025-01-01 DOI: 10.1016/j.ibmed.2025.100211
Rodrigo Ramos-Díaz , Jesús García-Ramírez , Jimena Olveres , Boris Escalante-Ramírez
Interpretable machine learning is an emerging trend that holds significant importance, considering the growing impact of machine learning systems on society and human lives. Many interpretability methods are applied in CNN after training to provide deeper insights into the outcomes, but only a few have tried to promote interpretability during training. The aim of this experimental study is to investigate the interpretability of CNN. This research was applied to chest computed tomography scans, as understanding CNN predictions has particular importance in the automatic classification of medical images. We attempted to implement a CNN technique aimed at improving interpretability by relating filters in the last convolutional to specific output classes. Variations of such a technique were explored and assessed using chest CT images for classification based on the presence of lungs and lesions. A search was conducted to optimize the specific hyper-parameters necessary for the evaluated strategies. A novel strategy is proposed employing transfer learning and regularization. Models obtained with this strategy and the optimized hyperparameters were statistically compared to standard models, demonstrating greater interpretability without a significant loss in predictive accuracy. We achieved CNN models with improved interpretability, which is crucial for the development of more explainable and reliable AI systems.
{"title":"Improving CNN interpretability and evaluation via alternating training and regularization in chest CT scans","authors":"Rodrigo Ramos-Díaz ,&nbsp;Jesús García-Ramírez ,&nbsp;Jimena Olveres ,&nbsp;Boris Escalante-Ramírez","doi":"10.1016/j.ibmed.2025.100211","DOIUrl":"10.1016/j.ibmed.2025.100211","url":null,"abstract":"<div><div>Interpretable machine learning is an emerging trend that holds significant importance, considering the growing impact of machine learning systems on society and human lives. Many interpretability methods are applied in CNN after training to provide deeper insights into the outcomes, but only a few have tried to promote interpretability during training. The aim of this experimental study is to investigate the interpretability of CNN. This research was applied to chest computed tomography scans, as understanding CNN predictions has particular importance in the automatic classification of medical images. We attempted to implement a CNN technique aimed at improving interpretability by relating filters in the last convolutional to specific output classes. Variations of such a technique were explored and assessed using chest CT images for classification based on the presence of lungs and lesions. A search was conducted to optimize the specific hyper-parameters necessary for the evaluated strategies. A novel strategy is proposed employing transfer learning and regularization. Models obtained with this strategy and the optimized hyperparameters were statistically compared to standard models, demonstrating greater interpretability without a significant loss in predictive accuracy. We achieved CNN models with improved interpretability, which is crucial for the development of more explainable and reliable AI systems.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100211"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143388250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing ResNet50 performance using stochastic gradient descent on MRI images for Alzheimer's disease classification
Pub Date : 2025-01-01 DOI: 10.1016/j.ibmed.2025.100219
Mohamed Amine Mahjoubi , Driss Lamrani , Shawki Saleh , Wassima Moutaouakil , Asmae Ouhmida , Soufiane Hamida , Bouchaib Cherradi , Abdelhadi Raihani
The field of optimization is focused on the formulation, analysis, and resolution of problems involving the minimization or maximization of functions. A particular subclass of optimization problems, known as empirical risk minimization, involves fitting a model to observed data. These problems play a central role in various areas such as machine learning, statistical modeling, and decision theory, where the objective is to find a model that best approximates underlying patterns in the data by minimizing a specified loss or risk function. In deep learning (DL) systems, various optimization algorithms are utilized with the gradient descent (GD) algorithm being one of the most significant and effective. Research studies have improved the GD algorithm and developed various successful variants, including stochastic gradient descent (SGD) with momentum, AdaGrad, RMSProp, and Adam. This article provides a comparative analysis of these stochastic gradient descent algorithms based on their accuracy, loss, and training time, as well as the loss of each algorithm in generating an optimization solution. Experiments were conducted using Transfer Learning (TL) technique based on the pre-trained ResNet50 base model for image classification, with a focus on stochastic gradient (SG) for performances optimization. The case study in this work is based on a data extract from the Alzheimer's image dataset, which contains four classes such as Mild Demented, Moderate Demented, Non-Demented, and Very Mild Demented. The obtained results with the Adam and SGD momentum optimizers achieved the highest accuracy of 97.66 % and 97.58 %, respectively.
{"title":"Optimizing ResNet50 performance using stochastic gradient descent on MRI images for Alzheimer's disease classification","authors":"Mohamed Amine Mahjoubi ,&nbsp;Driss Lamrani ,&nbsp;Shawki Saleh ,&nbsp;Wassima Moutaouakil ,&nbsp;Asmae Ouhmida ,&nbsp;Soufiane Hamida ,&nbsp;Bouchaib Cherradi ,&nbsp;Abdelhadi Raihani","doi":"10.1016/j.ibmed.2025.100219","DOIUrl":"10.1016/j.ibmed.2025.100219","url":null,"abstract":"<div><div>The field of optimization is focused on the formulation, analysis, and resolution of problems involving the minimization or maximization of functions. A particular subclass of optimization problems, known as empirical risk minimization, involves fitting a model to observed data. These problems play a central role in various areas such as machine learning, statistical modeling, and decision theory, where the objective is to find a model that best approximates underlying patterns in the data by minimizing a specified loss or risk function. In deep learning (DL) systems, various optimization algorithms are utilized with the gradient descent (GD) algorithm being one of the most significant and effective. Research studies have improved the GD algorithm and developed various successful variants, including stochastic gradient descent (SGD) with momentum, AdaGrad, RMSProp, and Adam. This article provides a comparative analysis of these stochastic gradient descent algorithms based on their accuracy, loss, and training time, as well as the loss of each algorithm in generating an optimization solution. Experiments were conducted using Transfer Learning (TL) technique based on the pre-trained ResNet50 base model for image classification, with a focus on stochastic gradient (SG) for performances optimization. The case study in this work is based on a data extract from the Alzheimer's image dataset, which contains four classes such as Mild Demented, Moderate Demented, Non-Demented, and Very Mild Demented. The obtained results with the Adam and SGD momentum optimizers achieved the highest accuracy of 97.66 % and 97.58 %, respectively.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100219"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143173637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A mobile application LukaKu as a tool for detecting external wounds with artificial intelligence
Pub Date : 2025-01-01 DOI: 10.1016/j.ibmed.2025.100200
Dessy Novita , Herika Hayurani , Eva Krishna Sutedja , Firdaus Ryan Pratomo , Achmad Dino Saputra , Zahra Ramadhanti , Nuryadin Abutani , Muhammad Rafi Triandi , Aldin Mubarok Guferol , Anindya Apriliyanti Pravitasari , Fajar Wira Adikusuma , Atiek Rostika Noviyanti
This study was conducted due to the lack of applications that can assist people intreating common external wounds. Therefore, we proposed the application of image-based detection which takes external wounds and identifies them using Artificial Intelligence namely LukaKu. In addition to detecting the type of wound that occurs, the application is expected to be able to produce first aid and medicine for each existing external wound label. The model used is YOLOv5 with various versions, namely YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. By calculating the validation data, each version has its own precision, recall, f1-score, and Mean Average Precision (mAP) values which are the comparison factors in determining the best model version, where YOLOv5l with mAP value of 0.785 is the best result and YOLOv5n with mAP value of 0.588 is the result with the lowest value. In the model development process, datasets of external injuries are needed to be used during the training process and test datasets for each existing model version. After each version of the model has been successfully built and analysed, the model with the best value is implemented in the mobile application, making it easier for users to access.
{"title":"A mobile application LukaKu as a tool for detecting external wounds with artificial intelligence","authors":"Dessy Novita ,&nbsp;Herika Hayurani ,&nbsp;Eva Krishna Sutedja ,&nbsp;Firdaus Ryan Pratomo ,&nbsp;Achmad Dino Saputra ,&nbsp;Zahra Ramadhanti ,&nbsp;Nuryadin Abutani ,&nbsp;Muhammad Rafi Triandi ,&nbsp;Aldin Mubarok Guferol ,&nbsp;Anindya Apriliyanti Pravitasari ,&nbsp;Fajar Wira Adikusuma ,&nbsp;Atiek Rostika Noviyanti","doi":"10.1016/j.ibmed.2025.100200","DOIUrl":"10.1016/j.ibmed.2025.100200","url":null,"abstract":"<div><div>This study was conducted due to the lack of applications that can assist people intreating common external wounds. Therefore, we proposed the application of image-based detection which takes external wounds and identifies them using Artificial Intelligence namely LukaKu. In addition to detecting the type of wound that occurs, the application is expected to be able to produce first aid and medicine for each existing external wound label. The model used is YOLOv5 with various versions, namely YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. By calculating the validation data, each version has its own precision, recall, f1-score, and Mean Average Precision (mAP) values which are the comparison factors in determining the best model version, where YOLOv5l with mAP value of 0.785 is the best result and YOLOv5n with mAP value of 0.588 is the result with the lowest value. In the model development process, datasets of external injuries are needed to be used during the training process and test datasets for each existing model version. After each version of the model has been successfully built and analysed, the model with the best value is implemented in the mobile application, making it easier for users to access.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100200"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143174331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative analysis of deep learning and machine learning techniques for forecasting new malaria cases in Cameroon’s Adamaoua region
Pub Date : 2025-01-01 DOI: 10.1016/j.ibmed.2025.100220
Esaie Naroum , Ebenezer Maka Maka , Hamadjam Abboubakar , Paul Dayang , Appolinaire Batoure Bamana , Benjamin Garga , Hassana Daouda Daouda , Mohsen Bakouri , Ilyas Khan
The Plasmodium parasite, which causes malaria is transmitted by Anopheles mosquitoes, and remains a major development barrier in Africa. This is particularly true considering the conducive environment that promotes the spread of malaria. This study examines several machine learning approaches, such as long short term memory (LSTM), random forests (RF), support vector machines (SVM), and data regularization models including Ridge, Lasso, and ElasticNet, in order to forecast the occurrence of malaria in the Adamaoua region of Cameroon. The LSTM, a recurrent neural network variant, performed the best with 76% accuracy and a low error rate (RMSE = 0.08). Statistical evidence indicates that temperatures exceeding 34 degrees halt mosquito vector reproduction, thereby slowing the spread of malaria. However, humidity increases the morbidity of the condition. The survey also identified high-risk areas in Ngaoundéré Rural and Urban and Meiganga. Between 2018 and 2022, the Adamaoua region had 20.1%, 12.3%, and 10.0% of malaria cases, respectively, in these locations. According to the estimate, the number of malaria cases in the Adamaoua region will rise gradually between 2023 and 2026, peaking in 2029 before declining in 2031.
{"title":"Comparative analysis of deep learning and machine learning techniques for forecasting new malaria cases in Cameroon’s Adamaoua region","authors":"Esaie Naroum ,&nbsp;Ebenezer Maka Maka ,&nbsp;Hamadjam Abboubakar ,&nbsp;Paul Dayang ,&nbsp;Appolinaire Batoure Bamana ,&nbsp;Benjamin Garga ,&nbsp;Hassana Daouda Daouda ,&nbsp;Mohsen Bakouri ,&nbsp;Ilyas Khan","doi":"10.1016/j.ibmed.2025.100220","DOIUrl":"10.1016/j.ibmed.2025.100220","url":null,"abstract":"<div><div>The Plasmodium parasite, which causes malaria is transmitted by Anopheles mosquitoes, and remains a major development barrier in Africa. This is particularly true considering the conducive environment that promotes the spread of malaria. This study examines several machine learning approaches, such as long short term memory (LSTM), random forests (RF), support vector machines (SVM), and data regularization models including Ridge, Lasso, and ElasticNet, in order to forecast the occurrence of malaria in the Adamaoua region of Cameroon. The LSTM, a recurrent neural network variant, performed the best with 76% accuracy and a low error rate (RMSE = 0.08). Statistical evidence indicates that temperatures exceeding 34 degrees halt mosquito vector reproduction, thereby slowing the spread of malaria. However, humidity increases the morbidity of the condition. The survey also identified high-risk areas in Ngaoundéré Rural and Urban and Meiganga. Between 2018 and 2022, the Adamaoua region had 20.1%, 12.3%, and 10.0% of malaria cases, respectively, in these locations. According to the estimate, the number of malaria cases in the Adamaoua region will rise gradually between 2023 and 2026, peaking in 2029 before declining in 2031.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100220"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143388305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A drug recommendation system based on response prediction: Integrating gene expression and K-mer fragmentation of drug SMILES using LightGBM
Pub Date : 2025-01-01 DOI: 10.1016/j.ibmed.2025.100206
Sajid Naveed , Mujtaba Husnain
Medical experts and physicians examine the gene expression abnormality in glioblastoma (GBM) cancer patients to identify the drug response. The main objective of this research is to build a machine learning (ML) based model for improve the outcome of cancer medication to save the time and effort of medical practitioners. Developing a drug response recommendation system is our goal that uses the gene expression data of cancer cell lines to predict the response of anticancer drugs in terms of half-maximal inhibitory concentration (IC50). Genetic data from a GBM cancer patient is used as input into a system to predict and recommend the response of multiple anticancer drugs in a particular cancer sample. In this research, we used K-mer molecular fragmentation to process drug SMILES in a novel way, which enabled us to build a competent model that provides drug response. We used the Light Gradient Boosting Machine (LightGBM) regression algorithm and Genomics of Drug Sensitivity of Cancer (GDSC) data for this proposed recommendation system. The results showed that all predicted IC50 values are fall within the range of the real values when examining GBM data. Two drugs, temozolomide and carmustine, were predicted with a Mean Squared Error (MSE) of 0.10 and 0.11 respectively, and 0.41 in unseen test samples. These recommended responses were then verified by expert doctors, who confirmed that the responses to these drugs were very close to the actual response. These recommendation are also effective in slowing the growth of these tumors and improving patients quality of life by monitoring medication effects.
{"title":"A drug recommendation system based on response prediction: Integrating gene expression and K-mer fragmentation of drug SMILES using LightGBM","authors":"Sajid Naveed ,&nbsp;Mujtaba Husnain","doi":"10.1016/j.ibmed.2025.100206","DOIUrl":"10.1016/j.ibmed.2025.100206","url":null,"abstract":"<div><div>Medical experts and physicians examine the gene expression abnormality in glioblastoma (GBM) cancer patients to identify the drug response. The main objective of this research is to build a machine learning (ML) based model for improve the outcome of cancer medication to save the time and effort of medical practitioners. Developing a drug response recommendation system is our goal that uses the gene expression data of cancer cell lines to predict the response of anticancer drugs in terms of half-maximal inhibitory concentration (IC50). Genetic data from a GBM cancer patient is used as input into a system to predict and recommend the response of multiple anticancer drugs in a particular cancer sample. In this research, we used K-mer molecular fragmentation to process drug SMILES in a novel way, which enabled us to build a competent model that provides drug response. We used the Light Gradient Boosting Machine (LightGBM) regression algorithm and Genomics of Drug Sensitivity of Cancer (GDSC) data for this proposed recommendation system. The results showed that all predicted IC50 values are fall within the range of the real values when examining GBM data. Two drugs, temozolomide and carmustine, were predicted with a Mean Squared Error (MSE) of 0.10 and 0.11 respectively, and 0.41 in unseen test samples. These recommended responses were then verified by expert doctors, who confirmed that the responses to these drugs were very close to the actual response. These recommendation are also effective in slowing the growth of these tumors and improving patients quality of life by monitoring medication effects.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100206"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143173636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An intelligent ensemble EfficientNet prediction system for interpretations of cardiac magnetic resonance images in heart failure severity diagnosis
Pub Date : 2025-01-01 DOI: 10.1016/j.ibmed.2025.100218
Muthunayagam Muthulakshmi , Kotteswaran Venkatesan , Balaji Prasanalakshmi , Rahayu Syarifah Bahiyah , Vijayakumar Divya
Ensemble models as part of federated learning leverage the ability of individual models to learn unique patterns from the training dataset to make more efficient predictions than single predicting systems. This study aggregates the output of four best-performing EfficientNet models to arrive at the final heart failure severity prediction through federated learning. The seven variants of EfficientNet models (B0-B7) learn the features from the cardiac magnetic resonance images that are most relevant to heart failure severity. Further, the performance of every model variant has been analysed with three different optimizers i.e. Adam, SGD, and RMSprop. It has been observed that the developed ensemble prediction system provides an improved overall testing accuracy of 0.95. It is also worthy to note that the ensemble prediction has yielded significant improvement in the prediction of individual classes which is evident from sensitivity measure of 0.95, 0.88, 1.00, 0.93, and 0.98 for hyperdynamic, mild, moderate, normal and severe classes respectively. It is obvious from these results that the proposed ensemble EfficientNet prediction system would assist the radiologist in better interpretation of cardiac magnetic resonance images. This in turn would benefit the cardiologist in understanding the HF progress and planning effective therapeutic intervention.
{"title":"An intelligent ensemble EfficientNet prediction system for interpretations of cardiac magnetic resonance images in heart failure severity diagnosis","authors":"Muthunayagam Muthulakshmi ,&nbsp;Kotteswaran Venkatesan ,&nbsp;Balaji Prasanalakshmi ,&nbsp;Rahayu Syarifah Bahiyah ,&nbsp;Vijayakumar Divya","doi":"10.1016/j.ibmed.2025.100218","DOIUrl":"10.1016/j.ibmed.2025.100218","url":null,"abstract":"<div><div>Ensemble models as part of federated learning leverage the ability of individual models to learn unique patterns from the training dataset to make more efficient predictions than single predicting systems. This study aggregates the output of four best-performing EfficientNet models to arrive at the final heart failure severity prediction through federated learning. The seven variants of EfficientNet models (B0-B7) learn the features from the cardiac magnetic resonance images that are most relevant to heart failure severity. Further, the performance of every model variant has been analysed with three different optimizers i.e. Adam, SGD, and RMSprop. It has been observed that the developed ensemble prediction system provides an improved overall testing accuracy of 0.95. It is also worthy to note that the ensemble prediction has yielded significant improvement in the prediction of individual classes which is evident from sensitivity measure of 0.95, 0.88, 1.00, 0.93, and 0.98 for hyperdynamic, mild, moderate, normal and severe classes respectively. It is obvious from these results that the proposed ensemble EfficientNet prediction system would assist the radiologist in better interpretation of cardiac magnetic resonance images. This in turn would benefit the cardiologist in understanding the HF progress and planning effective therapeutic intervention.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100218"},"PeriodicalIF":0.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143173638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Intelligence-based medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1