A cascade deep learning model for diagnosing pharyngeal acid reflux episodes using hypopharyngeal multichannel intraluminal Impedance-pH signals

Jachih Fu , Ping-Huan Lee , Chen-Chi Wang, Ying-Cheng Lin, Chun-Yi Chuang, Yung-An Tsou, Yen-Yang Chen, Sheng-Shun Yang, Han-Chung Lien
{"title":"A cascade deep learning model for diagnosing pharyngeal acid reflux episodes using hypopharyngeal multichannel intraluminal Impedance-pH signals","authors":"Jachih Fu ,&nbsp;Ping-Huan Lee ,&nbsp;Chen-Chi Wang,&nbsp;Ying-Cheng Lin,&nbsp;Chun-Yi Chuang,&nbsp;Yung-An Tsou,&nbsp;Yen-Yang Chen,&nbsp;Sheng-Shun Yang,&nbsp;Han-Chung Lien","doi":"10.1016/j.ibmed.2023.100131","DOIUrl":null,"url":null,"abstract":"<div><p>Detecting pharyngeal acid reflux (PAR) episodes from 24-h ambulatory hypopharyngeal multichannel intraluminal impedance-pH (HMII-pH) signals is crucial for diagnosing laryngopharyngeal reflux (LPR). Currently, a lack of effective software for PAR episode detection requires time-consuming manual interpretation, which is prone to inter-rater variability. This study introduces a deep learning-based artificial intelligence (AI) system for PAR episode detection and diagnosis using HMII-pH signals. Ninety patients with suspected LPR and 28 healthy volunteers underwent HMII-pH testing in three Taiwanese medical centers. Candidate PAR episodes were defined as esophagopharyngeal pH drops exceeding 2 units, with nadir pH below 5 within 30 seconds during esophageal acidification. A consensus review by three experts validated 84 PAR episodes in 17 subjects. Data preprocessing identified 225 candidate PAR episodes, including 84 PAR episodes and 141 swallows/artifacts, were divided into training, validation, and test datasets (6:2:2 ratio). Three cascade deep learning AI models were trained. Among them, the cascade Multivariate Long Short-Term Memory with Fully Convolutional Network (MLSTM-FCN) model performed best in the test dataset. At the episode level, this model achieved 0.936 accuracy, 0.941 precision, 0.889 recall, 0.966 specificity, 0.914 F<sub>1</sub> score, and 0.864 Matthew's correlation coefficient (MCC). For subject-level evaluation, the corresponding metrics were 0.917 accuracy, 1.000 precision, 0.818 recall, 1.000 specificity, 0.900 F<sub>1</sub> score, and 0.842 MCC. In conclusion, the cascade MLSTM-FCN model demonstrates robust accuracy in diagnosing PAR episodes from HMII-pH signals, offering a promising tool for efficient and consistent PAR episode detection in LPR diagnosis.</p></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"8 ","pages":"Article 100131"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666521223000455/pdfft?md5=e7ec271a1ce7d43fee77be9059a01637&pid=1-s2.0-S2666521223000455-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666521223000455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting pharyngeal acid reflux (PAR) episodes from 24-h ambulatory hypopharyngeal multichannel intraluminal impedance-pH (HMII-pH) signals is crucial for diagnosing laryngopharyngeal reflux (LPR). Currently, a lack of effective software for PAR episode detection requires time-consuming manual interpretation, which is prone to inter-rater variability. This study introduces a deep learning-based artificial intelligence (AI) system for PAR episode detection and diagnosis using HMII-pH signals. Ninety patients with suspected LPR and 28 healthy volunteers underwent HMII-pH testing in three Taiwanese medical centers. Candidate PAR episodes were defined as esophagopharyngeal pH drops exceeding 2 units, with nadir pH below 5 within 30 seconds during esophageal acidification. A consensus review by three experts validated 84 PAR episodes in 17 subjects. Data preprocessing identified 225 candidate PAR episodes, including 84 PAR episodes and 141 swallows/artifacts, were divided into training, validation, and test datasets (6:2:2 ratio). Three cascade deep learning AI models were trained. Among them, the cascade Multivariate Long Short-Term Memory with Fully Convolutional Network (MLSTM-FCN) model performed best in the test dataset. At the episode level, this model achieved 0.936 accuracy, 0.941 precision, 0.889 recall, 0.966 specificity, 0.914 F1 score, and 0.864 Matthew's correlation coefficient (MCC). For subject-level evaluation, the corresponding metrics were 0.917 accuracy, 1.000 precision, 0.818 recall, 1.000 specificity, 0.900 F1 score, and 0.842 MCC. In conclusion, the cascade MLSTM-FCN model demonstrates robust accuracy in diagnosing PAR episodes from HMII-pH signals, offering a promising tool for efficient and consistent PAR episode detection in LPR diagnosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用下咽多通道腔内阻抗- ph信号诊断咽酸反流发作的级联深度学习模型
从24小时动态下咽多通道腔内阻抗- ph (HMII-pH)信号检测咽酸反流(PAR)发作对于诊断喉咽反流(LPR)至关重要。目前,由于缺乏有效的PAR事件检测软件,需要耗费大量时间进行人工解释,这很容易造成不同等级之间的差异。本研究介绍了一种基于深度学习的人工智能(AI)系统,用于使用hmi - ph信号进行PAR事件检测和诊断。90名疑似LPR患者和28名健康志愿者在台湾三个医疗中心进行了hmi - ph检测。候选PAR发作定义为食管咽pH值下降超过2个单位,食管酸化过程中30秒内pH值最低低于5。三位专家的共识审查证实了17名受试者的84次PAR发作。数据预处理确定了225个候选PAR集,包括84个PAR集和141个燕子/伪影,按6:2:2的比例分为训练、验证和测试数据集。训练了三个级联深度学习人工智能模型。其中,基于全卷积网络的级联多元长短期记忆(MLSTM-FCN)模型在测试数据集中表现最好。在事件水平上,该模型的准确率为0.936,精密度为0.941,召回率为0.889,特异性为0.966,F1评分为0.914,马修相关系数(MCC)为0.864。受试者水平评价的指标为正确率0.917,精密度1.000,召回率0.818,特异性1.000,F1评分0.900,MCC 0.842。总之,级联MLSTM-FCN模型在从hmi - ph信号中诊断PAR发作方面具有较强的准确性,为LPR诊断中高效和一致的PAR发作检测提供了一个有前途的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Intelligence-based medicine
Intelligence-based medicine Health Informatics
CiteScore
5.00
自引率
0.00%
发文量
0
审稿时长
187 days
期刊最新文献
Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Automatic characterization of cerebral MRI images for the detection of autism spectrum disorders DOTnet 2.0: Deep learning network for diffuse optical tomography image reconstruction Artificial intelligence in child development monitoring: A systematic review on usage, outcomes and acceptance Clustering polycystic ovary syndrome laboratory results extracted from a large internet forum with machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1