High-reduction radial shear rolling of aluminum alloy bars using custom-calibrated rolls

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING International Journal of Material Forming Pub Date : 2023-11-28 DOI:10.1007/s12289-023-01801-z
Yu V. Gamin, S. P. Galkin, A. N. Koshmin, A. Mahmoud Alhaj Ali, X. D. Nguyen, I. S. ELDeeb
{"title":"High-reduction radial shear rolling of aluminum alloy bars using custom-calibrated rolls","authors":"Yu V. Gamin,&nbsp;S. P. Galkin,&nbsp;A. N. Koshmin,&nbsp;A. Mahmoud Alhaj Ali,&nbsp;X. D. Nguyen,&nbsp;I. S. ELDeeb","doi":"10.1007/s12289-023-01801-z","DOIUrl":null,"url":null,"abstract":"<div><p>The article presents a novel technique for performing high reduction radial shear rolling (HRRSR) of aluminum alloy bars. For this purpose, rolls with a special calibration were developed, including a high reduction section and a roll feed angle of 20°. The proposed process was investigated using FEM simulation, first. The temperature, stress-strain state, and force parameters analysis showed that the proposed method can produce defect-free bars with a natural gradient microstructure. Afterward, the experimental alloy Al-3Ca-2La-1Mn (wt%), was processed by a single-pass HRRSR process, resulting in a bar with an elongation ratio of 5. High compression and shear strains provide severe deformation of the initial cast microstructure and form a uniform distribution of small eutectic inclusions of the Al4(Ca, La) phase in the aluminum matrix. The obtained results, indicate the possibility of severe deformation of aluminum alloys using the radial shear rolling method. The proposed method of deformation can be the basis for an effective technology for obtaining bulk, long-length bars from various aluminum alloys, with a high reduction in a single pass.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"17 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-023-01801-z","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

The article presents a novel technique for performing high reduction radial shear rolling (HRRSR) of aluminum alloy bars. For this purpose, rolls with a special calibration were developed, including a high reduction section and a roll feed angle of 20°. The proposed process was investigated using FEM simulation, first. The temperature, stress-strain state, and force parameters analysis showed that the proposed method can produce defect-free bars with a natural gradient microstructure. Afterward, the experimental alloy Al-3Ca-2La-1Mn (wt%), was processed by a single-pass HRRSR process, resulting in a bar with an elongation ratio of 5. High compression and shear strains provide severe deformation of the initial cast microstructure and form a uniform distribution of small eutectic inclusions of the Al4(Ca, La) phase in the aluminum matrix. The obtained results, indicate the possibility of severe deformation of aluminum alloys using the radial shear rolling method. The proposed method of deformation can be the basis for an effective technology for obtaining bulk, long-length bars from various aluminum alloys, with a high reduction in a single pass.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用定制校准的轧辊对铝合金棒材进行高减径径向剪切轧制
本文介绍了一种铝合金棒材高压下率径向剪切轧制新工艺。为此,开发了具有特殊校准的轧辊,包括高减速部分和轧辊进给角为20°。首先采用有限元模拟方法对该工艺进行了研究。温度、应力-应变状态和受力参数分析表明,该方法可以制备出具有自然梯度组织的无缺陷棒材。然后,对实验合金Al-3Ca-2La-1Mn (wt%)进行单道HRRSR处理,得到伸长率为5的棒材。高压缩应变和剪切应变使铸态组织发生严重变形,并在铝基体中形成均匀分布的Al4(Ca, La)相小共晶夹杂体。结果表明,径向剪切轧制法可以使铝合金发生严重变形。所提出的变形方法可以成为一种有效技术的基础,用于从各种铝合金中获得大块,长棒材,在单道次中具有高还原率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
期刊最新文献
The evolution of thermal cycle, microstructures and mechanical properties of 6061 – T6 aluminum alloy thick plate Bobbin tool friction stir welded Generalisation of the hydrodynamics model method for hot and cold strip rolling application UNIMAT: An enhanced forming simulation model of prepreg woven fabrics, with application to process optimization for wrinkle mitigation Optimisation of interlayer temperature in wire-arc additive manufacturing process using NURBS-based metamodel Accurate real-time modeling for multiple-blow forging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1