Biosynthesis of phosphatidylglycerol in photosynthetic organisms

IF 14 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Progress in lipid research Pub Date : 2023-11-29 DOI:10.1016/j.plipres.2023.101266
Koichi Kobayashi , Haruhiko Jimbo , Yuki Nakamura , Hajime Wada
{"title":"Biosynthesis of phosphatidylglycerol in photosynthetic organisms","authors":"Koichi Kobayashi ,&nbsp;Haruhiko Jimbo ,&nbsp;Yuki Nakamura ,&nbsp;Hajime Wada","doi":"10.1016/j.plipres.2023.101266","DOIUrl":null,"url":null,"abstract":"<div><p>Phosphatidylglycerol (PG) is a unique phospholipid class with its indispensable role in photosynthesis and growth in land plants, algae, and cyanobacteria. PG is the only major phospholipid in the thylakoid membrane of cyanobacteria and plant chloroplasts and a main lipid component in photosynthetic protein-cofactor complexes such as photosystem I and photosystem II. In plants and algae, PG is also essential as a substrate for the biosynthesis of cardiolipin, which is a unique lipid present only in mitochondrial membranes and crucial for the functions of mitochondria. PG biosynthesis pathways in plants include three membranous organelles, plastids, mitochondria, and the endoplasmic reticulum in a complex manner. While the molecular biology underlying the role of PG in photosynthetic functions is well established, many enzymes responsible for the PG biosynthesis are only recently cloned and functionally characterized in the model plant species including <em>Arabidopsis thaliana</em> and <em>Chlamydomonas reinhardtii</em> and cyanobacteria such as <em>Synechocystis</em> sp. PCC 6803. The characterization of those enzymes helps understand not only the metabolic flow for PG production but also the crosstalk of biosynthesis pathways between PG and other lipids. This review aims to summarize recent advances in the understanding of the PG biosynthesis pathway and functions of involved enzymes.</p></div>","PeriodicalId":20650,"journal":{"name":"Progress in lipid research","volume":"93 ","pages":"Article 101266"},"PeriodicalIF":14.0000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0163782723000565/pdfft?md5=59eec7a8fe480a879401a444422a47bd&pid=1-s2.0-S0163782723000565-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in lipid research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0163782723000565","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphatidylglycerol (PG) is a unique phospholipid class with its indispensable role in photosynthesis and growth in land plants, algae, and cyanobacteria. PG is the only major phospholipid in the thylakoid membrane of cyanobacteria and plant chloroplasts and a main lipid component in photosynthetic protein-cofactor complexes such as photosystem I and photosystem II. In plants and algae, PG is also essential as a substrate for the biosynthesis of cardiolipin, which is a unique lipid present only in mitochondrial membranes and crucial for the functions of mitochondria. PG biosynthesis pathways in plants include three membranous organelles, plastids, mitochondria, and the endoplasmic reticulum in a complex manner. While the molecular biology underlying the role of PG in photosynthetic functions is well established, many enzymes responsible for the PG biosynthesis are only recently cloned and functionally characterized in the model plant species including Arabidopsis thaliana and Chlamydomonas reinhardtii and cyanobacteria such as Synechocystis sp. PCC 6803. The characterization of those enzymes helps understand not only the metabolic flow for PG production but also the crosstalk of biosynthesis pathways between PG and other lipids. This review aims to summarize recent advances in the understanding of the PG biosynthesis pathway and functions of involved enzymes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光合生物中磷脂酰甘油的生物合成。
磷脂酰甘油(PG)是一种独特的磷脂类,在陆地植物、藻类和蓝藻的光合作用和生长中起着不可或缺的作用。PG是蓝藻和植物叶绿体类囊体膜中唯一的主要磷脂,也是光系统I和光系统II等光合蛋白辅助因子复合物的主要脂质成分。在植物和藻类中,PG作为生物合成心磷脂的底物也是必不可少的,心磷脂是一种独特的脂质,仅存在于线粒体膜中,对线粒体的功能至关重要。植物中PG的生物合成途径包括三种膜细胞器、质体、线粒体和内质网,途径复杂。虽然PG在光合功能中的作用的分子生物学基础已经建立,但许多负责PG生物合成的酶最近才在模式植物物种中被克隆和功能表征,包括拟南芥和莱茵衣藻以及蓝藻,如Synechocystis sp. PCC 6803。这些酶的特性不仅有助于了解PG生产的代谢流程,还有助于了解PG与其他脂类之间的生物合成途径的串扰。本文综述了近年来对PG生物合成途径及相关酶功能的研究进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Progress in lipid research
Progress in lipid research 生物-生化与分子生物学
CiteScore
24.50
自引率
2.20%
发文量
37
审稿时长
14.6 weeks
期刊介绍: The significance of lipids as a fundamental category of biological compounds has been widely acknowledged. The utilization of our understanding in the fields of biochemistry, chemistry, and physiology of lipids has continued to grow in biotechnology, the fats and oils industry, and medicine. Moreover, new aspects such as lipid biophysics, particularly related to membranes and lipoproteins, as well as basic research and applications of liposomes, have emerged. To keep up with these advancements, there is a need for a journal that can evaluate recent progress in specific areas and provide a historical perspective on current research. Progress in Lipid Research serves this purpose.
期刊最新文献
How active cholesterol coordinates cell cholesterol homeostasis: Test of a hypothesis Lipid sensing by PPARα: Role in controlling hepatocyte gene regulatory networks and the metabolic response to fasting Increasing oil content in Brassica oilseed species Long chain polyunsaturated fatty acid (LC-PUFA) composition of fish sperm: nexus of dietary, evolutionary, and biomechanical drivers Targeting bacterial phospholipids and their synthesis pathways for antibiotic discovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1