Nadaraya-Watson estimators for reflected stochastic processes

IF 1.2 4区 数学 Q1 MATHEMATICS Acta Mathematica Scientia Pub Date : 2023-11-29 DOI:10.1007/s10473-024-0107-1
Yuecai Han, Dingwen Zhang
{"title":"Nadaraya-Watson estimators for reflected stochastic processes","authors":"Yuecai Han,&nbsp;Dingwen Zhang","doi":"10.1007/s10473-024-0107-1","DOIUrl":null,"url":null,"abstract":"<div><p>We study the Nadaraya-Watson estimators for the drift function of two-sided reflected stochastic differential equations. The estimates, based on either the continuously observed process or the discretely observed process, are considered. Under certain conditions, we prove the strong consistency and the asymptotic normality of the two estimators. Our method is also suitable for one-sided reflected stochastic differential equations. Simulation results demonstrate that the performance of our estimator is superior to that of the estimator proposed by Cholaquidis <i>et al.</i> (Stat Sin, 2021, 31: 29–51). Several real data sets of the currency exchange rate are used to illustrate our proposed methodology.</p></div>","PeriodicalId":50998,"journal":{"name":"Acta Mathematica Scientia","volume":"44 1","pages":"143 - 160"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Scientia","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10473-024-0107-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

We study the Nadaraya-Watson estimators for the drift function of two-sided reflected stochastic differential equations. The estimates, based on either the continuously observed process or the discretely observed process, are considered. Under certain conditions, we prove the strong consistency and the asymptotic normality of the two estimators. Our method is also suitable for one-sided reflected stochastic differential equations. Simulation results demonstrate that the performance of our estimator is superior to that of the estimator proposed by Cholaquidis et al. (Stat Sin, 2021, 31: 29–51). Several real data sets of the currency exchange rate are used to illustrate our proposed methodology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
反射随机过程的Nadaraya-Watson估计量
研究了双侧反射型随机微分方程漂移函数的Nadaraya-Watson估计。考虑了基于连续观测过程或离散观测过程的估计。在一定条件下,证明了这两个估计量的强相合性和渐近正态性。我们的方法也适用于单侧反射随机微分方程。仿真结果表明,该估计器的性能优于Cholaquidis等人提出的估计器(Stat Sin, 2021, 31: 29-51)。几个真实的货币汇率数据集被用来说明我们提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.00
自引率
10.00%
发文量
2614
审稿时长
6 months
期刊介绍: Acta Mathematica Scientia was founded by Prof. Li Guoping (Lee Kwok Ping) in April 1981. The aim of Acta Mathematica Scientia is to present to the specialized readers important new achievements in the areas of mathematical sciences. The journal considers for publication of original research papers in all areas related to the frontier branches of mathematics with other science and technology.
期刊最新文献
Lévy area analysis and parameter estimation for fOU processes via non-geometric rough path theory Heat kernel on Ricci shrinkers (II) Variational analysis for the maximal time function in normed spaces Toeplitz operators between weighted Bergman spaces over the half-plane Global unique solutions for the incompressible MHD equations with variable density and electrical conductivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1