Spatial gene expression in the adult rat patellar tendon

Q1 Medicine Matrix Biology Plus Pub Date : 2023-12-01 DOI:10.1016/j.mbplus.2023.100138
Danielle Steffen , Michael Mienaltowski , Keith Baar
{"title":"Spatial gene expression in the adult rat patellar tendon","authors":"Danielle Steffen ,&nbsp;Michael Mienaltowski ,&nbsp;Keith Baar","doi":"10.1016/j.mbplus.2023.100138","DOIUrl":null,"url":null,"abstract":"<div><p>Tendons are dense connective tissues with relatively few cells which makes studying the molecular profile of the tissue challenging. There is not a consensus on the spatial location of various cell types within a tendon, nor the accompanying transcriptional profile. In the present study, we used two male rat patellar tendon samples for sequencing-based spatial transcriptomics to determine the gene expression profile. We integrated our data with a mouse Achilles single cell dataset to predict the cell type composition of the patellar tendon as a function of location within the tissue. The spatial location of the predicated cell types suggested that there were two populations of tendon fibroblasts, one located in the tendon midsubstance, while the other localized with red blood cells, pericytes, and immune cells to the tendon peripheral connective tissue. Of the highest expressed spatially variable genes, there were multiple genes with known function in tendon: Col1a1, Col1a2, Dcn, Fmod, Sparc, and Comp. Further, a novel spatially regulated gene (AABR07000398.1) with no known function was identified. The spatial gene expression of tendon associated genes (Scx, Thbs4, Tnmd, Can, Bgn, Lum, Adamts2, Lox, Ppib, Col2a1, Col3a1, Col6a2) was also visualized. Both patellar tendon samples had similar expression patterns for all these genes. This dataset provides new spatial insights into gene expression in a healthy tendon.</p></div>","PeriodicalId":52317,"journal":{"name":"Matrix Biology Plus","volume":"19 ","pages":"Article 100138"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259002852300011X/pdfft?md5=92f789b40475e66f6e1aa25a6e729868&pid=1-s2.0-S259002852300011X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Biology Plus","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259002852300011X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Tendons are dense connective tissues with relatively few cells which makes studying the molecular profile of the tissue challenging. There is not a consensus on the spatial location of various cell types within a tendon, nor the accompanying transcriptional profile. In the present study, we used two male rat patellar tendon samples for sequencing-based spatial transcriptomics to determine the gene expression profile. We integrated our data with a mouse Achilles single cell dataset to predict the cell type composition of the patellar tendon as a function of location within the tissue. The spatial location of the predicated cell types suggested that there were two populations of tendon fibroblasts, one located in the tendon midsubstance, while the other localized with red blood cells, pericytes, and immune cells to the tendon peripheral connective tissue. Of the highest expressed spatially variable genes, there were multiple genes with known function in tendon: Col1a1, Col1a2, Dcn, Fmod, Sparc, and Comp. Further, a novel spatially regulated gene (AABR07000398.1) with no known function was identified. The spatial gene expression of tendon associated genes (Scx, Thbs4, Tnmd, Can, Bgn, Lum, Adamts2, Lox, Ppib, Col2a1, Col3a1, Col6a2) was also visualized. Both patellar tendon samples had similar expression patterns for all these genes. This dataset provides new spatial insights into gene expression in a healthy tendon.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空间基因在成年大鼠髌腱中的表达
肌腱是致密的结缔组织,细胞相对较少,这使得研究组织的分子特征具有挑战性。关于肌腱内各种细胞类型的空间位置,以及相应的转录谱,目前还没有达成共识。在本研究中,我们使用两个雄性大鼠髌骨肌腱样本进行基于测序的空间转录组学来确定基因表达谱。我们将数据与小鼠跟腱单细胞数据集相结合,以预测髌腱的细胞类型组成与组织内位置的关系。预测细胞类型的空间位置表明,有两群肌腱成纤维细胞,一群位于肌腱中间物质,另一群定位于肌腱周围结缔组织的红细胞、周细胞和免疫细胞。在表达量最高的空间可变基因中,有多个在肌腱中具有已知功能的基因:Col1a1、Col1a2、Dcn、Fmod、Sparc和Comp。此外,还发现了一个未知功能的新型空间调控基因(AABR07000398.1)。肌腱相关基因(Scx、Thbs4、Tnmd、Can、Bgn、Lum、Adamts2、Lox、Ppib、Col2a1、Col3a1、Col6a2)的空间基因表达也被可视化。两种髌骨肌腱样本具有相似的所有这些基因的表达模式。该数据集为健康肌腱中的基因表达提供了新的空间见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matrix Biology Plus
Matrix Biology Plus Medicine-Histology
CiteScore
9.00
自引率
0.00%
发文量
25
审稿时长
105 days
期刊最新文献
A human stem cell-derived model reveals pathologic extracellular matrix remodeling in diabetic podocyte injury Bone quality relies on hyaluronan synthesis – Insights from mice with complete knockout of hyaluronan synthase expression Profiling of collagen and extracellular matrix deposition from cell culture using in vitro ExtraCellular matrix mass spectrometry imaging (ivECM-MSI) Obesity-driven changes in breast tissue exhibit a pro-angiogenic extracellular matrix signature The importance of matrix in cardiomyogenesis: Defined substrates for maturation and chamber specificity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1