Functional analysis of Ornithine decarboxylase in manipulating the wing dimorphism in Nilaparvata lugens (Stål) (Hemiptera: Delphacidae)

IF 2.3 2区 农林科学 Q1 ENTOMOLOGY Journal of insect physiology Pub Date : 2023-12-01 DOI:10.1016/j.jinsphys.2023.104587
Wan-Xue Li , Jing-Xiang Chen , Chuan-Chuan Zhang, Min-Shi Luo, Wen-Qing Zhang
{"title":"Functional analysis of Ornithine decarboxylase in manipulating the wing dimorphism in Nilaparvata lugens (Stål) (Hemiptera: Delphacidae)","authors":"Wan-Xue Li ,&nbsp;Jing-Xiang Chen ,&nbsp;Chuan-Chuan Zhang,&nbsp;Min-Shi Luo,&nbsp;Wen-Qing Zhang","doi":"10.1016/j.jinsphys.2023.104587","DOIUrl":null,"url":null,"abstract":"<div><p>The brown planthopper (BPH, <em>Nilaparvata lugens</em>), a major insect pest of rice, can make a shift in wing dimorphism to adapt to complex external environments. Our previous study showed that <em>NlODC</em> (<em>Ornithine decarboxylase</em> in <em>N. lugens</em>) was involved in wing dimorphism of the brown planthopper. Here, further experiments were conducted to reveal possible molecular mechanism of <em>NlODC</em> in manipulating the wing dimorphism. We found that the long-winged rate (LWR) of BPH was significantly reduced after RNAi of <em>NlODC</em> or injection of DFMO (D, L-α-Difluoromethylornithine), and LWR of males and females significantly decreased by 21.7% and 34.6%, respectively. Meanwhile, we also examined the contents of three polyamines under DFMO treatment and found that the contents of putrescine and spermidine were significantly lower compared to the control. After 3rd instar nymphs were injected with putrescine and spermidine, LWR was increased significantly in both cases, and putrescine was a little bit more effective, with 5.6% increase in males and 11.4% in females. Three days after injection of ds<em>NlODC</em>, injection of putrescine and spermidine rescued LWR to the normal levels. In the regulation of wing differentiation in BPH, <em>NlODC</em> mutually antagonistic to <em>NlAkt</em> may act through other signaling pathways rather than the classical insulin signaling pathway. This study illuminated a physiological function of an <em>ODC</em> gene involved in wing differentiation in insects, which could be a potential target for pest control.</p></div>","PeriodicalId":16189,"journal":{"name":"Journal of insect physiology","volume":"152 ","pages":"Article 104587"},"PeriodicalIF":2.3000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of insect physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022191023001130","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The brown planthopper (BPH, Nilaparvata lugens), a major insect pest of rice, can make a shift in wing dimorphism to adapt to complex external environments. Our previous study showed that NlODC (Ornithine decarboxylase in N. lugens) was involved in wing dimorphism of the brown planthopper. Here, further experiments were conducted to reveal possible molecular mechanism of NlODC in manipulating the wing dimorphism. We found that the long-winged rate (LWR) of BPH was significantly reduced after RNAi of NlODC or injection of DFMO (D, L-α-Difluoromethylornithine), and LWR of males and females significantly decreased by 21.7% and 34.6%, respectively. Meanwhile, we also examined the contents of three polyamines under DFMO treatment and found that the contents of putrescine and spermidine were significantly lower compared to the control. After 3rd instar nymphs were injected with putrescine and spermidine, LWR was increased significantly in both cases, and putrescine was a little bit more effective, with 5.6% increase in males and 11.4% in females. Three days after injection of dsNlODC, injection of putrescine and spermidine rescued LWR to the normal levels. In the regulation of wing differentiation in BPH, NlODC mutually antagonistic to NlAkt may act through other signaling pathways rather than the classical insulin signaling pathway. This study illuminated a physiological function of an ODC gene involved in wing differentiation in insects, which could be a potential target for pest control.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
鸟氨酸脱羧酶在操纵褐飞虱翅膀二态性中的功能分析(半翅目:飞虱科)。
褐飞虱(Nilaparvata lugens, BPH, Nilaparvata lugens)是水稻的主要害虫,它可以改变翅膀的二态性以适应复杂的外部环境。我们的前期研究表明,褐飞虱的翅膀二态性与NlODC(鸟氨酸脱羧酶in N. lugens)有关。在此,我们进行了进一步的实验来揭示NlODC调控翅膀二态性的可能分子机制。我们发现,NlODC RNAi或注射DFMO (D, L-α-二氟甲基鸟氨酸)后,BPH的长翅率(LWR)显著降低,雄性和雌性的LWR分别显著降低21.7%和34.6%。同时,我们还检测了DFMO处理下三种多胺的含量,发现腐胺和亚精胺的含量明显低于对照。3龄若虫注射腐胺和亚精胺后,LWR均显著升高,且腐胺效果稍好,雄虫升高5.6%,雌虫升高11.4%。注射dsNlODC 3天后,注射腐胺和亚精胺使LWR恢复到正常水平。在BPH对翅膀分化的调控中,NlODC与NlAkt相互拮抗,可能通过其他信号通路而不是经典的胰岛素信号通路发挥作用。本研究揭示了ODC基因在昆虫翅膀分化中的生理功能,这可能是害虫防治的潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of insect physiology
Journal of insect physiology 生物-昆虫学
CiteScore
4.50
自引率
4.50%
发文量
77
审稿时长
57 days
期刊介绍: All aspects of insect physiology are published in this journal which will also accept papers on the physiology of other arthropods, if the referees consider the work to be of general interest. The coverage includes endocrinology (in relation to moulting, reproduction and metabolism), pheromones, neurobiology (cellular, integrative and developmental), physiological pharmacology, nutrition (food selection, digestion and absorption), homeostasis, excretion, reproduction and behaviour. Papers covering functional genomics and molecular approaches to physiological problems will also be included. Communications on structure and applied entomology can be published if the subject matter has an explicit bearing on the physiology of arthropods. Review articles and novel method papers are also welcomed.
期刊最新文献
Light pollution disrupts seasonal reproductive phenotypes and reduces lifespan in the West Nile vector, Culex pipiens. MicroRNA-34 disrupts border cell migration by targeting Eip74EF in Drosophila melanogaster. A male-killing Spiroplasma endosymbiont has age-mediated impacts on Drosophila endurance and sleep. Gonadal development of adultoid reproductive in subterranean termites indicates strong reproductive potential. Antennal olfactory responses in the black soldier fly Hermetia illucens
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1