Ordinal-ResLogit: Interpretable deep residual neural networks for ordered choices

IF 2.8 3区 经济学 Q1 ECONOMICS Journal of Choice Modelling Pub Date : 2023-12-03 DOI:10.1016/j.jocm.2023.100454
Kimia Kamal, Bilal Farooq
{"title":"Ordinal-ResLogit: Interpretable deep residual neural networks for ordered choices","authors":"Kimia Kamal,&nbsp;Bilal Farooq","doi":"10.1016/j.jocm.2023.100454","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents an Ordinal version of Residual Logit (Ordinal-ResLogit) model to investigate the ordinal responses. We integrate the standard ResLogit model into COnsistent RAnk Logits (CORAL) framework, classified as a binary classification algorithm, to develop a fully interpretable deep learning-based ordinal regression model. As the formulation of the Ordinal-ResLogit model enjoys the Residual Neural Networks concept, our proposed model addresses the main constraint of machine learning algorithms, known as black-box. Moreover, the Ordinal-ResLogit model, as a binary classification framework for ordinal data, guarantees consistency among binary classifiers. We showed that the resulting formulation is able to capture underlying unobserved heterogeneity from the data as well as being an interpretable deep learning-based model. Formulations for market share, substitution patterns, and elasticities are derived. We compare the performance of the Ordinal-ResLogit model with an Ordered Logit Model using a stated preference (SP) dataset on pedestrian wait time and a revealed preference (RP) dataset on travel distance. Our results show that Ordinal-ResLogit outperforms the traditional ordinal regression model. Furthermore, the results obtained from the Ordinal-ResLogit RP model show that travel attributes such as driving and transit cost have significant effects on choosing the location of non-mandatory trips. In terms of the Ordinal-ResLogit SP model, our results highlight that the road-related variables and traffic condition are contributing factors in the prediction of pedestrian waiting time such that the mixed traffic condition significantly increases the probability of choosing longer waiting times.</p></div>","PeriodicalId":46863,"journal":{"name":"Journal of Choice Modelling","volume":"50 ","pages":"Article 100454"},"PeriodicalIF":2.8000,"publicationDate":"2023-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755534523000556/pdfft?md5=2de4669857508ad1b34265073b2c4a88&pid=1-s2.0-S1755534523000556-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Choice Modelling","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755534523000556","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents an Ordinal version of Residual Logit (Ordinal-ResLogit) model to investigate the ordinal responses. We integrate the standard ResLogit model into COnsistent RAnk Logits (CORAL) framework, classified as a binary classification algorithm, to develop a fully interpretable deep learning-based ordinal regression model. As the formulation of the Ordinal-ResLogit model enjoys the Residual Neural Networks concept, our proposed model addresses the main constraint of machine learning algorithms, known as black-box. Moreover, the Ordinal-ResLogit model, as a binary classification framework for ordinal data, guarantees consistency among binary classifiers. We showed that the resulting formulation is able to capture underlying unobserved heterogeneity from the data as well as being an interpretable deep learning-based model. Formulations for market share, substitution patterns, and elasticities are derived. We compare the performance of the Ordinal-ResLogit model with an Ordered Logit Model using a stated preference (SP) dataset on pedestrian wait time and a revealed preference (RP) dataset on travel distance. Our results show that Ordinal-ResLogit outperforms the traditional ordinal regression model. Furthermore, the results obtained from the Ordinal-ResLogit RP model show that travel attributes such as driving and transit cost have significant effects on choosing the location of non-mandatory trips. In terms of the Ordinal-ResLogit SP model, our results highlight that the road-related variables and traffic condition are contributing factors in the prediction of pedestrian waiting time such that the mixed traffic condition significantly increases the probability of choosing longer waiting times.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有序选择的可解释深度残差神经网络
本研究提出一个序数版本的残差Logit (Ordinal- reslogit)模型来研究序数响应。我们将标准的ResLogit模型整合到COnsistent RAnk Logits (CORAL)框架中,并将其分类为二元分类算法,以开发一个完全可解释的基于深度学习的有序回归模型。由于Ordinal-ResLogit模型的公式具有残差神经网络的概念,因此我们提出的模型解决了机器学习算法的主要约束,即黑箱。此外,ordinal - reslogit模型作为有序数据的二分类框架,保证了二分类器之间的一致性。我们表明,所得公式能够从数据中捕获潜在的未观察到的异质性,并且是一个可解释的基于深度学习的模型。推导了市场份额、替代模式和弹性的公式。我们比较了Ordinal-ResLogit模型与Ordered Logit模型的性能,使用行人等待时间的陈述偏好(SP)数据集和旅行距离的显示偏好(RP)数据集。结果表明,ordinal - reslogit优于传统的有序回归模型。此外,Ordinal-ResLogit RP模型的结果表明,驾驶和交通成本等出行属性对非强制性出行地点的选择有显著影响。在Ordinal-ResLogit SP模型中,我们的研究结果强调道路相关变量和交通状况是预测行人等待时间的影响因素,混合交通状况显著增加了行人选择更长的等待时间的概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
12.50%
发文量
31
期刊最新文献
Editorial Board Latent class choice models with an error structure: Investigating potential unobserved associations between latent segmentation and behavior generation Model choice and framing effects: Do discrete choice modeling decisions affect loss aversion estimates? A consistent moment equations for binary probit models with endogenous variables using instrumental variables Transformation-based flexible error structures for choice modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1