Boric Acid Improved Cryopreserved Mouse Embryo Development.

IF 3.4 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Biological Trace Element Research Pub Date : 2024-09-01 Epub Date: 2023-12-05 DOI:10.1007/s12011-023-03990-9
A Kocabay, A C Taskin
{"title":"Boric Acid Improved Cryopreserved Mouse Embryo Development.","authors":"A Kocabay, A C Taskin","doi":"10.1007/s12011-023-03990-9","DOIUrl":null,"url":null,"abstract":"<p><p>Boric acid (BA) is an essential trace element that is required to support the metabolic pathways in plants, humans, and animals. The present study investigates the in vitro development and quality of single-cell mouse embryos in a BA-added culture medium after cryopreservation using the solid-surface vitrification method. For this purpose, the pronuclear-stage embryos derived from superovulated C57Bl/6j mouse strains and the one-cell embryos were then cryopreserved using the solid-surface vitrification (SSV) method. After thawing, the embryos were cultured in a BA-added medium at 37 °C in a 5% CO<sub>2</sub> environment until the blastocyst stage. The resulting in vitro development rates of the embryos in the control group, SSV group, and SSV + 1.62 × 10<sup>-4</sup> μM BA group were 68.11% (36/59), 40.16% (16/48), and 64.92% (28/48) respectively, indicating that the BA supported the in vitro development of the embryos cryopreserved using the SSV method. Our results suggest that the addition of boric acid to the culture media increased the development rate of the embryos that were vitrified using the SSV method.</p>","PeriodicalId":8917,"journal":{"name":"Biological Trace Element Research","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Trace Element Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-023-03990-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Boric acid (BA) is an essential trace element that is required to support the metabolic pathways in plants, humans, and animals. The present study investigates the in vitro development and quality of single-cell mouse embryos in a BA-added culture medium after cryopreservation using the solid-surface vitrification method. For this purpose, the pronuclear-stage embryos derived from superovulated C57Bl/6j mouse strains and the one-cell embryos were then cryopreserved using the solid-surface vitrification (SSV) method. After thawing, the embryos were cultured in a BA-added medium at 37 °C in a 5% CO2 environment until the blastocyst stage. The resulting in vitro development rates of the embryos in the control group, SSV group, and SSV + 1.62 × 10-4 μM BA group were 68.11% (36/59), 40.16% (16/48), and 64.92% (28/48) respectively, indicating that the BA supported the in vitro development of the embryos cryopreserved using the SSV method. Our results suggest that the addition of boric acid to the culture media increased the development rate of the embryos that were vitrified using the SSV method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硼酸促进低温保存小鼠胚胎发育。
硼酸(BA)是一种必需的微量元素,支持植物、人类和动物的代谢途径。本研究采用固体表面玻璃化法对小鼠单细胞胚胎在添加ba的培养基中低温保存后的体外发育和质量进行了研究。为此,采用固体表面玻璃化(SSV)方法对C57Bl/6j小鼠超排卵株的原核期胚胎和单细胞胚胎进行冷冻保存。解冻后,将胚胎置于添加ba的培养基中,37℃,5% CO2环境中培养至囊胚期。对照组、SSV组和SSV + 1.62 × 10-4 μM BA组胚胎体外发育率分别为68.11%(36/59)、40.16%(16/48)和64.92%(28/48),表明BA支持SSV法冷冻保存胚胎的体外发育。我们的结果表明,在培养基中添加硼酸可以提高用SSV法玻璃化的胚胎的发育速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biological Trace Element Research
Biological Trace Element Research 生物-内分泌学与代谢
CiteScore
8.70
自引率
10.30%
发文量
459
审稿时长
2 months
期刊介绍: Biological Trace Element Research provides a much-needed central forum for the emergent, interdisciplinary field of research on the biological, environmental, and biomedical roles of trace elements. Rather than confine itself to biochemistry, the journal emphasizes the integrative aspects of trace metal research in all appropriate fields, publishing human and animal nutritional studies devoted to the fundamental chemistry and biochemistry at issue as well as to the elucidation of the relevant aspects of preventive medicine, epidemiology, clinical chemistry, agriculture, endocrinology, animal science, pharmacology, microbiology, toxicology, virology, marine biology, sensory physiology, developmental biology, and related fields.
期刊最新文献
Correction: Cobalt Uptake by Food Plants and Accumulation in Municipal Solid Waste Materials Compost-amended Soil: Public Health Implications. Disrupting Development: Unraveling the Interplay of Aryl Hydrocarbon Receptor (AHR) and Wnt/β-Catenin Pathways in Kidney Development Under the Influence of Environmental Pollutants. Assessing Trace Metal-Based Human Health Risks for Commonly Used Body Soaps in Bangladesh. Assessment of Heavy Metals in Biscuit Samples Available in Iraqi Markets. Association Between Copper Intake and Migraine: a National Cross-sectional Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1