High-temperature tribological performance of functionally graded Stellite 6/WC metal matrix composite coatings manufactured by laser-directed energy deposition
Marta Ostolaza, Alaitz Zabala, Jon Iñaki Arrizubieta, Iñigo Llavori, Nagore Otegi, Aitzol Lamikiz
{"title":"High-temperature tribological performance of functionally graded Stellite 6/WC metal matrix composite coatings manufactured by laser-directed energy deposition","authors":"Marta Ostolaza, Alaitz Zabala, Jon Iñaki Arrizubieta, Iñigo Llavori, Nagore Otegi, Aitzol Lamikiz","doi":"10.1007/s40544-023-0790-2","DOIUrl":null,"url":null,"abstract":"<p>Wear-driven tool failure is one of the main hurdles in the industry. This issue can be addressed through surface coating with ceramic-reinforced metal matrix composites. However, the maximum ceramic content is limited by cracking. In this work, the tribological behaviour of the functionally graded WC-ceramic-particle-reinforced Stellite 6 coatings is studied. To that end, the wear resistance at room temperature and 400 °C is investigated. Moreover, the tribological analysis is supported by crack sensitivity and hardness evaluation, which is of utmost importance in the processing of composite materials with ceramic-particle-reinforcement. Results indicate that functionally graded materials can be employed to increase the maximum admissible WC content, hence improving the tribological behaviour, most notably at high temperatures. Additionally, a shift from abrasive to oxidative wear is observed in high-temperature wear testing.\n</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":" 67","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-023-0790-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Wear-driven tool failure is one of the main hurdles in the industry. This issue can be addressed through surface coating with ceramic-reinforced metal matrix composites. However, the maximum ceramic content is limited by cracking. In this work, the tribological behaviour of the functionally graded WC-ceramic-particle-reinforced Stellite 6 coatings is studied. To that end, the wear resistance at room temperature and 400 °C is investigated. Moreover, the tribological analysis is supported by crack sensitivity and hardness evaluation, which is of utmost importance in the processing of composite materials with ceramic-particle-reinforcement. Results indicate that functionally graded materials can be employed to increase the maximum admissible WC content, hence improving the tribological behaviour, most notably at high temperatures. Additionally, a shift from abrasive to oxidative wear is observed in high-temperature wear testing.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.