{"title":"Mixed and thermal elastohydrodynamic simulation of a low-loss gear considering the gear system","authors":"Felix Farrenkopf, Thomas Lohner, Karsten Stahl","doi":"10.26599/frict.2025.9441096","DOIUrl":null,"url":null,"abstract":"<p>The reduction of load-dependent gear power loss is one of the key aspects in modern gear design. Therefore, a detailed power loss prediction and the local investigation of its drivers is essential to use its full potential. In this study, the model of the author's previous work is stepwise enhanced to match the real contact conditions as close as possible. The impact of the eliminated simplification or assumption is shown at each of the individual enhancement steps. The proper choice of the lubricant parameters, the coefficient of solid friction and the gear system stiffness show the great impacts on load-dependent gear power losses and the local friction distribution. It is explained how the load-dependent gear power loss of an individual tooth contact is derived from the transient local TEHL contact and subsequently the measurable load-dependent gear power loss of the gear stage. Considering a low-loss gear geometry, the simulation results are compared with experimental results and shows a good level of conformity.</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":"197 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.26599/frict.2025.9441096","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The reduction of load-dependent gear power loss is one of the key aspects in modern gear design. Therefore, a detailed power loss prediction and the local investigation of its drivers is essential to use its full potential. In this study, the model of the author's previous work is stepwise enhanced to match the real contact conditions as close as possible. The impact of the eliminated simplification or assumption is shown at each of the individual enhancement steps. The proper choice of the lubricant parameters, the coefficient of solid friction and the gear system stiffness show the great impacts on load-dependent gear power losses and the local friction distribution. It is explained how the load-dependent gear power loss of an individual tooth contact is derived from the transient local TEHL contact and subsequently the measurable load-dependent gear power loss of the gear stage. Considering a low-loss gear geometry, the simulation results are compared with experimental results and shows a good level of conformity.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.