URANUS: Radio Frequency Tracking, Classification and Identification of Unmanned Aircraft Vehicles

IF 5.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of Vehicular Technology Pub Date : 2023-11-17 DOI:10.1109/OJVT.2023.3333676
DOMENICO LOFÙ;Pietro Di Gennaro;Pietro Tedeschi;Tommaso Di Noia;Eugenio Di Sciascio
{"title":"URANUS: Radio Frequency Tracking, Classification and Identification of Unmanned Aircraft Vehicles","authors":"DOMENICO LOFÙ;Pietro Di Gennaro;Pietro Tedeschi;Tommaso Di Noia;Eugenio Di Sciascio","doi":"10.1109/OJVT.2023.3333676","DOIUrl":null,"url":null,"abstract":"Safety and security issues for Critical Infrastructures are growing as attackers adopt drones as an attack vector flying in sensitive airspaces, such as airports, military bases, city centers, and crowded places. Despite the use of UAVs for logistics, shipping recreation activities, and commercial applications, their usage poses severe concerns to operators due to the violations and the invasions of the restricted airspaces. A cost-effective and real-time framework is needed to detect the presence of drones in such cases. In this contribution, we propose an efficient radio frequency-based detection framework called URANUS. We leverage real-time data provided by the Radio Frequency/Direction Finding system, and radars in order to detect, classify and identify drones (multi-copter and fixed-wings) invading no-drone zones. We adopt a Multilayer Perceptron neural network to identify and classify UAVs in real-time, with 90% accuracy. For the tracking task, we use a Random Forest model to predict the position of a drone with an MSE \n<inline-formula><tex-math>$\\approx 0.29$</tex-math></inline-formula>\n, MAE \n<inline-formula><tex-math>$\\approx 0.04$</tex-math></inline-formula>\n, and \n<inline-formula><tex-math>$R^{2}\\approx 0.93$</tex-math></inline-formula>\n. Furthermore, coordinate regression is performed using Universal Transverse Mercator coordinates to ensure high accuracy. Our analysis shows that URANUS is an ideal framework for identifying, classifying, and tracking UAVs that most Critical Infrastructure operators can adopt.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10320374","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10320374/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

Safety and security issues for Critical Infrastructures are growing as attackers adopt drones as an attack vector flying in sensitive airspaces, such as airports, military bases, city centers, and crowded places. Despite the use of UAVs for logistics, shipping recreation activities, and commercial applications, their usage poses severe concerns to operators due to the violations and the invasions of the restricted airspaces. A cost-effective and real-time framework is needed to detect the presence of drones in such cases. In this contribution, we propose an efficient radio frequency-based detection framework called URANUS. We leverage real-time data provided by the Radio Frequency/Direction Finding system, and radars in order to detect, classify and identify drones (multi-copter and fixed-wings) invading no-drone zones. We adopt a Multilayer Perceptron neural network to identify and classify UAVs in real-time, with 90% accuracy. For the tracking task, we use a Random Forest model to predict the position of a drone with an MSE $\approx 0.29$ , MAE $\approx 0.04$ , and $R^{2}\approx 0.93$ . Furthermore, coordinate regression is performed using Universal Transverse Mercator coordinates to ensure high accuracy. Our analysis shows that URANUS is an ideal framework for identifying, classifying, and tracking UAVs that most Critical Infrastructure operators can adopt.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
URANUS:无人驾驶飞行器的无线电频率跟踪、分类和识别
随着攻击者采用无人机作为在敏感空域(如机场、军事基地、城市中心和人群密集场所)飞行的攻击载体,关键基础设施的安全和安保问题日益突出。尽管无人机可用于物流、航运娱乐活动和商业应用,但由于侵犯和入侵受限空域,其使用给运营商带来了严重的问题。在这种情况下,需要一个具有成本效益的实时框架来检测无人机的存在。在本文中,我们提出了一种名为 URANUS 的基于无线电频率的高效检测框架。我们利用无线电频率/测向系统和雷达提供的实时数据,对入侵无人机禁区的无人机(多旋翼和固定翼)进行检测、分类和识别。我们采用多层感知器神经网络对无人机进行实时识别和分类,准确率达到 90%。在跟踪任务中,我们使用随机森林模型预测无人机的位置,MSE约为0.29,MAE约为0.04,R^{2}约为0.93。此外,为了确保高精度,我们还使用通用横墨卡托坐标进行了坐标回归。我们的分析表明,URANUS 是识别、分类和跟踪无人机的理想框架,大多数关键基础设施运营商都可以采用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
期刊最新文献
Digital Twin-Empowered Green Mobility Management in Next-Gen Transportation Networks Fairness-Aware Utility Maximization for Multi-UAV-Aided Terrestrial Networks LiFi for Industry 4.0: Main Features, Implementation and Initial Testing of IEEE Std 802.15.13 Partial Learning-Based Iterative Detection of MIMO Systems Decentralized and Asymmetric Multi-Agent Learning in Construction Sites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1