A flocking control algorithm of multi-agent systems based on cohesion of the potential function

IF 5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Complex & Intelligent Systems Pub Date : 2023-12-06 DOI:10.1007/s40747-023-01282-2
Chenyang Li, Yonghui Yang, Guanjie Jiang, Xue-Bo Chen
{"title":"A flocking control algorithm of multi-agent systems based on cohesion of the potential function","authors":"Chenyang Li, Yonghui Yang, Guanjie Jiang, Xue-Bo Chen","doi":"10.1007/s40747-023-01282-2","DOIUrl":null,"url":null,"abstract":"<p>Flocking cohesion is critical for maintaining a group’s aggregation and integrity. Designing a potential function to maintain flocking cohesion unaffected by social distance is challenging due to the uncertainty of real-world conditions and environments that cause changes in agents’ social distance. Previous flocking research based on potential functions has primarily focused on agents’ same social distance and the attraction–repulsion of the potential function, ignoring another property affecting flocking cohesion: well depth, as well as the effect of changes in agents’ social distance on well depth. This paper investigates the effect of potential function well depths and agent’s social distances on the multi-agent flocking cohesion. Through the analysis, proofs, and classification of these potential functions, we have found that the potential function well depth is proportional to the flocking cohesion. Moreover, we observe that the potential function well depth varies with the agents’ social distance changes. Therefore, we design a segmentation potential function and combine it with the flocking control algorithm in this paper. It enhances flocking cohesion significantly and has good robustness to ensure the flocking cohesion is unaffected by variations in the agents’ social distance. Meanwhile, it reduces the time required for flocking formation. Subsequently, the Lyapunov theorem and the LaSalle invariance principle prove the stability and convergence of the proposed control algorithm. Finally, this paper adopts two subgroups with different potential function well depths and social distances to encounter for simulation verification. The corresponding simulation results demonstrate and verify the effectiveness of the flocking control algorithm.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":" 4","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-023-01282-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Flocking cohesion is critical for maintaining a group’s aggregation and integrity. Designing a potential function to maintain flocking cohesion unaffected by social distance is challenging due to the uncertainty of real-world conditions and environments that cause changes in agents’ social distance. Previous flocking research based on potential functions has primarily focused on agents’ same social distance and the attraction–repulsion of the potential function, ignoring another property affecting flocking cohesion: well depth, as well as the effect of changes in agents’ social distance on well depth. This paper investigates the effect of potential function well depths and agent’s social distances on the multi-agent flocking cohesion. Through the analysis, proofs, and classification of these potential functions, we have found that the potential function well depth is proportional to the flocking cohesion. Moreover, we observe that the potential function well depth varies with the agents’ social distance changes. Therefore, we design a segmentation potential function and combine it with the flocking control algorithm in this paper. It enhances flocking cohesion significantly and has good robustness to ensure the flocking cohesion is unaffected by variations in the agents’ social distance. Meanwhile, it reduces the time required for flocking formation. Subsequently, the Lyapunov theorem and the LaSalle invariance principle prove the stability and convergence of the proposed control algorithm. Finally, this paper adopts two subgroups with different potential function well depths and social distances to encounter for simulation verification. The corresponding simulation results demonstrate and verify the effectiveness of the flocking control algorithm.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于势函数内聚的多智能体系统群集控制算法
群集内聚对于维持一个组的聚集性和完整性至关重要。由于现实世界条件和环境的不确定性会导致主体社会距离的变化,因此设计一个潜在函数来保持群体凝聚力不受社会距离的影响是具有挑战性的。以往基于势函数的群体研究主要集中在个体相同的社会距离和势函数的吸引-排斥,忽略了影响群体凝聚力的另一个特性:井深,以及个体社会距离的变化对井深的影响。研究了势函数井深度和智能体社会距离对多智能体群集内聚性的影响。通过对这些势函数的分析、证明和分类,我们发现势函数井深与簇聚力成正比。此外,我们观察到势函数井深度随主体社会距离的变化而变化。因此,本文设计了一个分割势函数,并将其与群集控制算法相结合。该算法显著增强了群体凝聚力,并具有良好的鲁棒性,确保群体凝聚力不受个体社会距离变化的影响。同时,减少了植绒形成所需的时间。随后,利用Lyapunov定理和LaSalle不变性原理证明了所提控制算法的稳定性和收敛性。最后,本文采用两个具有不同势函数井深和社会距离的子群相遇进行仿真验证。仿真结果验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Complex & Intelligent Systems
Complex & Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
9.60
自引率
10.30%
发文量
297
期刊介绍: Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.
期刊最新文献
Large-scale multiobjective competitive swarm optimizer algorithm based on regional multidirectional search Towards fairness-aware multi-objective optimization Low-frequency spectral graph convolution networks with one-hop connections information for personalized tag recommendation A decentralized feedback-based consensus model considering the consistency maintenance and readability of probabilistic linguistic preference relations for large-scale group decision-making A dynamic preference recommendation model based on spatiotemporal knowledge graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1