Juan Carlos Soto-Uribe*, Jesus Leobardo Valenzuela-Garcia*, Maria Mercedes Salazar-Campoy*, José Refugio Parga-Torres, Víctor Manuel Vazquez-Vazquez, Martin Antonio Encinas-Romero and Guadalupe Martinez-Ballesteros,
{"title":"Electrocoagulation Process for Recovery of Precious Metals from Cyanide Leachates Using a Low Voltage","authors":"Juan Carlos Soto-Uribe*, Jesus Leobardo Valenzuela-Garcia*, Maria Mercedes Salazar-Campoy*, José Refugio Parga-Torres, Víctor Manuel Vazquez-Vazquez, Martin Antonio Encinas-Romero and Guadalupe Martinez-Ballesteros, ","doi":"10.1021/acsengineeringau.3c00041","DOIUrl":null,"url":null,"abstract":"<p >The cyanidation of gold ores with copper content is frequent in gold mines. Copper affects the performance and profits of mineral processing. The current technology for gold recovery from cyanide solutions usually involves the adsorption of the gold-cyanide complex ion on activated carbon; however, the copper affects this process. The process of electrocoagulation (EC) is a promising technique for gold and silver recovery with copper, where all of the metals can be recovered. This work used the electrocoagulation process (EC) to evaluate the metal recovery from a pregnant leach solution (PLS), where EC is a promising technique. This study aimed to determine the optimal parameter to recover the gold and silver and to see the effect of copper concentration in the PLS obtained by simultaneous pressure leaching/oxidation of a gold-bearing pyritic concentrate. EC tests were run to recover gold and silver over copper from PLS using aluminum electrodes and variables like distances between electrodes, pH, potential applied, and feeding flow for continuous EC. The chemical assay of cyanide leachates shows a concentration of 7.15 mg/L of gold, 305 mg/L of silver, and 351.5 mg/L of copper with 1810 mg/L of free cyanide. The results showed that the EC process recovered 99% of gold and copper and 92% of silver at a pH of 11, 8 mm of dE, and a potential applied 3 V in 10 min. However, under this condition in continuous EC with a flow rate of 40 mL/min, the recovery is 66.3% of gold, 85.8% of silver, and 45.3% of copper; compared with the batch process, the gold and silver decrease.</p>","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsengineeringau.3c00041","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsengineeringau.3c00041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The cyanidation of gold ores with copper content is frequent in gold mines. Copper affects the performance and profits of mineral processing. The current technology for gold recovery from cyanide solutions usually involves the adsorption of the gold-cyanide complex ion on activated carbon; however, the copper affects this process. The process of electrocoagulation (EC) is a promising technique for gold and silver recovery with copper, where all of the metals can be recovered. This work used the electrocoagulation process (EC) to evaluate the metal recovery from a pregnant leach solution (PLS), where EC is a promising technique. This study aimed to determine the optimal parameter to recover the gold and silver and to see the effect of copper concentration in the PLS obtained by simultaneous pressure leaching/oxidation of a gold-bearing pyritic concentrate. EC tests were run to recover gold and silver over copper from PLS using aluminum electrodes and variables like distances between electrodes, pH, potential applied, and feeding flow for continuous EC. The chemical assay of cyanide leachates shows a concentration of 7.15 mg/L of gold, 305 mg/L of silver, and 351.5 mg/L of copper with 1810 mg/L of free cyanide. The results showed that the EC process recovered 99% of gold and copper and 92% of silver at a pH of 11, 8 mm of dE, and a potential applied 3 V in 10 min. However, under this condition in continuous EC with a flow rate of 40 mL/min, the recovery is 66.3% of gold, 85.8% of silver, and 45.3% of copper; compared with the batch process, the gold and silver decrease.
期刊介绍:
)ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)