Minimizing sensitivity to model misspecification

IF 1.9 3区 经济学 Q2 ECONOMICS Quantitative Economics Pub Date : 2022-07-19 DOI:10.3982/qe1930
Stéphane Bonhomme, Martin Weidner
{"title":"Minimizing sensitivity to model misspecification","authors":"Stéphane Bonhomme, Martin Weidner","doi":"10.3982/qe1930","DOIUrl":null,"url":null,"abstract":"We propose a framework for estimation and inference when the model may be misspecified. We rely on a local asymptotic approach where the degree of misspecification is indexed by the sample size. We construct estimators whose mean squared error is minimax in a neighborhood of the reference model, based on one-step adjustments. In addition, we provide confidence intervals that contain the true parameter under local misspecification. As a tool to interpret the degree of misspecification, we map it to the local power of a specification test of the reference model. Our approach allows for systematic sensitivity analysis when the parameter of interest may be partially or irregularly identified. As illustrations, we study three applications: an empirical analysis of the impact of conditional cash transfers in Mexico where misspecification stems from the presence of stigma effects of the program, a cross-sectional binary choice model where the error distribution is misspecified, and a dynamic panel data binary choice model where the number of time periods is small and the distribution of individual effects is misspecified.","PeriodicalId":46811,"journal":{"name":"Quantitative Economics","volume":" 8","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.3982/qe1930","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a framework for estimation and inference when the model may be misspecified. We rely on a local asymptotic approach where the degree of misspecification is indexed by the sample size. We construct estimators whose mean squared error is minimax in a neighborhood of the reference model, based on one-step adjustments. In addition, we provide confidence intervals that contain the true parameter under local misspecification. As a tool to interpret the degree of misspecification, we map it to the local power of a specification test of the reference model. Our approach allows for systematic sensitivity analysis when the parameter of interest may be partially or irregularly identified. As illustrations, we study three applications: an empirical analysis of the impact of conditional cash transfers in Mexico where misspecification stems from the presence of stigma effects of the program, a cross-sectional binary choice model where the error distribution is misspecified, and a dynamic panel data binary choice model where the number of time periods is small and the distribution of individual effects is misspecified.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最小化对模型规格错误的敏感性
我们提出了一个在模型可能被错误指定时进行估计和推理的框架。我们依靠局部渐近方法,其中错误规格的程度是由样本量索引。我们在参考模型的邻域内构造了基于一步调整的均方误差为极小极大的估计器。此外,我们还提供了在局部错配情况下包含真实参数的置信区间。作为解释错误规范程度的工具,我们将其映射到参考模型的规范测试的局部功率。当感兴趣的参数可能被部分或不规则地识别时,我们的方法允许系统的敏感性分析。作为例证,我们研究了三种应用:对墨西哥有条件现金转移的影响的实证分析,其中错误说明源于该计划的耻辱效应的存在,错误说明的横截面二元选择模型,错误说明的分布,以及动态面板数据二元选择模型,其中时间周期的数量很少,个人效应的分布是错误的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
5.60%
发文量
28
审稿时长
52 weeks
期刊最新文献
Geometric methods for finite rational inattention Measuring trust in institutions and its causal effect A robust permutation test for subvector inference in linear regressions Difficulties in testing for capital overaccumulation Bootstrapping Laplace transforms of volatility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1