Tardiness bounds for fixed-priority global scheduling without intra-task precedence constraints

IF 1.4 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Real-Time Systems Pub Date : 2021-01-18 DOI:10.1007/s11241-020-09360-1
Sergey Voronov, James H. Anderson, Kecheng Yang
{"title":"Tardiness bounds for fixed-priority global scheduling without intra-task precedence constraints","authors":"Sergey Voronov, James H. Anderson, Kecheng Yang","doi":"10.1007/s11241-020-09360-1","DOIUrl":null,"url":null,"abstract":"<p>Fixed-priority multiprocessor schedulers are often preferable to dynamic-priority ones because they entail less overhead, are easier to implement, and enable certain tasks to be favored over others. Under global fixed-priority (G-FP) scheduling, as applied to the standard sporadic task model, response times for low-priority tasks may be unbounded, even if the total task system utilization is low. In this paper, it is shown that this negative result can be circumvented if different jobs of the same task are allowed to execute in parallel. In particular, a response-time bound is presented for task systems that allow intra-task parallelism. This bound merely requires that the total utilization does not exceed the overall processing capacity—individual task utilizations need not be further restricted. This result implies that G-FP is optimal for scheduling soft real-time tasks that require bounded tardiness, if intra-task parallelism is allowed.</p>","PeriodicalId":54507,"journal":{"name":"Real-Time Systems","volume":"224 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real-Time Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11241-020-09360-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Fixed-priority multiprocessor schedulers are often preferable to dynamic-priority ones because they entail less overhead, are easier to implement, and enable certain tasks to be favored over others. Under global fixed-priority (G-FP) scheduling, as applied to the standard sporadic task model, response times for low-priority tasks may be unbounded, even if the total task system utilization is low. In this paper, it is shown that this negative result can be circumvented if different jobs of the same task are allowed to execute in parallel. In particular, a response-time bound is presented for task systems that allow intra-task parallelism. This bound merely requires that the total utilization does not exceed the overall processing capacity—individual task utilizations need not be further restricted. This result implies that G-FP is optimal for scheduling soft real-time tasks that require bounded tardiness, if intra-task parallelism is allowed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无任务内优先级约束的固定优先级全局调度的延迟边界
固定优先级的多处理器调度器通常比动态优先级的调度器更可取,因为它们需要较少的开销,更容易实现,并且使某些任务优于其他任务。在全局固定优先级调度(G-FP)下,应用于标准零星任务模型,低优先级任务的响应时间可能是无界的,即使任务系统的总利用率很低。本文表明,如果允许同一任务的不同作业并行执行,则可以避免这种负面结果。特别地,为允许任务内部并行的任务系统提供了响应时间限制。这个界限仅仅要求总利用率不超过总体处理容量——不需要进一步限制单个任务的利用率。这个结果表明,如果允许任务内部并行,G-FP对于调度需要有限延迟的软实时任务是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Real-Time Systems
Real-Time Systems 工程技术-计算机:理论方法
CiteScore
2.90
自引率
7.70%
发文量
15
审稿时长
6 months
期刊介绍: Papers published in Real-Time Systems cover, among others, the following topics: requirements engineering, specification and verification techniques, design methods and tools, programming languages, operating systems, scheduling algorithms, architecture, hardware and interfacing, dependability and safety, distributed and other novel architectures, wired and wireless communications, wireless sensor systems, distributed databases, artificial intelligence techniques, expert systems, and application case studies. Applications are found in command and control systems, process control, automated manufacturing, flight control, avionics, space avionics and defense systems, shipborne systems, vision and robotics, pervasive and ubiquitous computing, and in an abundance of embedded systems.
期刊最新文献
Multi-core interference over-estimation reduction by static scheduling of multi-phase tasks Connecting the physical space and cyber space of autonomous systems more closely Mcti: mixed-criticality task-based isolation Minimizing cache usage with fixed-priority and earliest deadline first scheduling MemPol: polling-based microsecond-scale per-core memory bandwidth regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1