{"title":"Multi-core interference over-estimation reduction by static scheduling of multi-phase tasks","authors":"Rémi Meunier, Thomas Carle, Thierry Monteil","doi":"10.1007/s11241-024-09427-3","DOIUrl":null,"url":null,"abstract":"<p>Interference between tasks running on separate cores in multi-core processors is a major challenge to predictability for real-time systems, and a source of over-estimation of worst-case execution duration bounds. This paper investigates how the multi-phase task model can be used together with static scheduling algorithms to improve the precision of the interference analysis. The paper focuses on single-period task systems (or multi-periodic systems that can be expanded over an hyperperiod). In particular, we propose an Integer Linear Programming (ILP) formulation of a generic scheduling problem as well as 3 heuristics that we evaluate on synthetic benchmarks and on 2 realistic applications. We observe that, compared to the classical 1-phase model, the multi-phase model allows to reduce the effect of interference on the worst-case makespan of the system by around 9% on average using the ILP on small systems, and up to 24% on our larger case studies. These results pave the way for future heuristics and for the adoption of the multi-phase model in multi-core context.</p>","PeriodicalId":54507,"journal":{"name":"Real-Time Systems","volume":"32 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real-Time Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11241-024-09427-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Interference between tasks running on separate cores in multi-core processors is a major challenge to predictability for real-time systems, and a source of over-estimation of worst-case execution duration bounds. This paper investigates how the multi-phase task model can be used together with static scheduling algorithms to improve the precision of the interference analysis. The paper focuses on single-period task systems (or multi-periodic systems that can be expanded over an hyperperiod). In particular, we propose an Integer Linear Programming (ILP) formulation of a generic scheduling problem as well as 3 heuristics that we evaluate on synthetic benchmarks and on 2 realistic applications. We observe that, compared to the classical 1-phase model, the multi-phase model allows to reduce the effect of interference on the worst-case makespan of the system by around 9% on average using the ILP on small systems, and up to 24% on our larger case studies. These results pave the way for future heuristics and for the adoption of the multi-phase model in multi-core context.
期刊介绍:
Papers published in Real-Time Systems cover, among others, the following topics: requirements engineering, specification and verification techniques, design methods and tools, programming languages, operating systems, scheduling algorithms, architecture, hardware and interfacing, dependability and safety, distributed and other novel architectures, wired and wireless communications, wireless sensor systems, distributed databases, artificial intelligence techniques, expert systems, and application case studies. Applications are found in command and control systems, process control, automated manufacturing, flight control, avionics, space avionics and defense systems, shipborne systems, vision and robotics, pervasive and ubiquitous computing, and in an abundance of embedded systems.