Multi-core interference over-estimation reduction by static scheduling of multi-phase tasks

IF 1.4 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS Real-Time Systems Pub Date : 2024-09-05 DOI:10.1007/s11241-024-09427-3
Rémi Meunier, Thomas Carle, Thierry Monteil
{"title":"Multi-core interference over-estimation reduction by static scheduling of multi-phase tasks","authors":"Rémi Meunier, Thomas Carle, Thierry Monteil","doi":"10.1007/s11241-024-09427-3","DOIUrl":null,"url":null,"abstract":"<p>Interference between tasks running on separate cores in multi-core processors is a major challenge to predictability for real-time systems, and a source of over-estimation of worst-case execution duration bounds. This paper investigates how the multi-phase task model can be used together with static scheduling algorithms to improve the precision of the interference analysis. The paper focuses on single-period task systems (or multi-periodic systems that can be expanded over an hyperperiod). In particular, we propose an Integer Linear Programming (ILP) formulation of a generic scheduling problem as well as 3 heuristics that we evaluate on synthetic benchmarks and on 2 realistic applications. We observe that, compared to the classical 1-phase model, the multi-phase model allows to reduce the effect of interference on the worst-case makespan of the system by around 9% on average using the ILP on small systems, and up to 24% on our larger case studies. These results pave the way for future heuristics and for the adoption of the multi-phase model in multi-core context.</p>","PeriodicalId":54507,"journal":{"name":"Real-Time Systems","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real-Time Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11241-024-09427-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Interference between tasks running on separate cores in multi-core processors is a major challenge to predictability for real-time systems, and a source of over-estimation of worst-case execution duration bounds. This paper investigates how the multi-phase task model can be used together with static scheduling algorithms to improve the precision of the interference analysis. The paper focuses on single-period task systems (or multi-periodic systems that can be expanded over an hyperperiod). In particular, we propose an Integer Linear Programming (ILP) formulation of a generic scheduling problem as well as 3 heuristics that we evaluate on synthetic benchmarks and on 2 realistic applications. We observe that, compared to the classical 1-phase model, the multi-phase model allows to reduce the effect of interference on the worst-case makespan of the system by around 9% on average using the ILP on small systems, and up to 24% on our larger case studies. These results pave the way for future heuristics and for the adoption of the multi-phase model in multi-core context.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过静态调度多阶段任务减少多核干扰高估
在多核处理器的不同内核上运行的任务之间的干扰是对实时系统可预测性的一大挑战,也是高估最坏情况下执行持续时间界限的根源。本文研究了如何将多阶段任务模型与静态调度算法结合使用,以提高干扰分析的精度。本文重点关注单周期任务系统(或可在超周期内扩展的多周期系统)。特别是,我们提出了通用调度问题的整数线性规划(ILP)公式以及 3 种启发式算法,并在合成基准和 2 个现实应用中进行了评估。我们发现,与经典的单阶段模型相比,多阶段模型允许在小型系统上使用 ILP 将干扰对系统最坏情况下的正常运行时间的影响平均减少约 9%,而在我们的大型案例研究中则可减少高达 24%。这些结果为未来的启发式方法以及在多核环境中采用多阶段模型铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Real-Time Systems
Real-Time Systems 工程技术-计算机:理论方法
CiteScore
2.90
自引率
7.70%
发文量
15
审稿时长
6 months
期刊介绍: Papers published in Real-Time Systems cover, among others, the following topics: requirements engineering, specification and verification techniques, design methods and tools, programming languages, operating systems, scheduling algorithms, architecture, hardware and interfacing, dependability and safety, distributed and other novel architectures, wired and wireless communications, wireless sensor systems, distributed databases, artificial intelligence techniques, expert systems, and application case studies. Applications are found in command and control systems, process control, automated manufacturing, flight control, avionics, space avionics and defense systems, shipborne systems, vision and robotics, pervasive and ubiquitous computing, and in an abundance of embedded systems.
期刊最新文献
Multi-core interference over-estimation reduction by static scheduling of multi-phase tasks Connecting the physical space and cyber space of autonomous systems more closely Mcti: mixed-criticality task-based isolation Minimizing cache usage with fixed-priority and earliest deadline first scheduling MemPol: polling-based microsecond-scale per-core memory bandwidth regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1