Niklas Reusch, Mohammadreza Barzegaran, Luxi Zhao, Silviu S. Craciunas, Paul Pop
{"title":"Configuration optimization for heterogeneous time-sensitive networks","authors":"Niklas Reusch, Mohammadreza Barzegaran, Luxi Zhao, Silviu S. Craciunas, Paul Pop","doi":"10.1007/s11241-023-09414-0","DOIUrl":null,"url":null,"abstract":"<p>Time-Sensitive Networking (TSN) collectively defines a set of protocols and standard amendments that enhance IEEE 802.1Q Ethernet nodes with time-aware and fault-tolerant capabilities. Specifically, the IEEE 802.1Qbv amendment defines a timed-gate mechanism that governs the real-time transmission of critical traffic via a so-called Gate Control List (GCL) schedule encoded in each TSN-capable network device. Most TSN scheduling mechanisms are designed for homogeneous TSN networks in which all network devices must have at least the TSN capabilities related to scheduled gates and time synchronization. However, this assumption is often unrealistic since many distributed applications use heterogeneous TSN networks with legacy or off-the-shelf end systems that are unscheduled and/or unsynchronized. We propose a new scheduling paradigm for heterogeneous TSN networks that intertwines a network calculus worst-case interference analysis within the scheduling step. Through this, we compromise on the solution’s optimality to be able to support heterogeneous TSN networks featuring unscheduled and/or unsynchronized end-systems while guaranteeing the real-time properties of critical communication. Within this new paradigm, we propose two solutions to solve the problem, one based on a Constraint Programming formulation and one based on a Simulated Annealing metaheuristic, that provide different trade-offs and scalability properties. We compare and evaluate our flexible window-based scheduling methods using both synthetic and real-world test cases, validating the correctness and scalability of our implementation. Furthermore, we use OMNET++ to validate the generated GCL schedules.</p>","PeriodicalId":54507,"journal":{"name":"Real-Time Systems","volume":"205 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real-Time Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11241-023-09414-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Time-Sensitive Networking (TSN) collectively defines a set of protocols and standard amendments that enhance IEEE 802.1Q Ethernet nodes with time-aware and fault-tolerant capabilities. Specifically, the IEEE 802.1Qbv amendment defines a timed-gate mechanism that governs the real-time transmission of critical traffic via a so-called Gate Control List (GCL) schedule encoded in each TSN-capable network device. Most TSN scheduling mechanisms are designed for homogeneous TSN networks in which all network devices must have at least the TSN capabilities related to scheduled gates and time synchronization. However, this assumption is often unrealistic since many distributed applications use heterogeneous TSN networks with legacy or off-the-shelf end systems that are unscheduled and/or unsynchronized. We propose a new scheduling paradigm for heterogeneous TSN networks that intertwines a network calculus worst-case interference analysis within the scheduling step. Through this, we compromise on the solution’s optimality to be able to support heterogeneous TSN networks featuring unscheduled and/or unsynchronized end-systems while guaranteeing the real-time properties of critical communication. Within this new paradigm, we propose two solutions to solve the problem, one based on a Constraint Programming formulation and one based on a Simulated Annealing metaheuristic, that provide different trade-offs and scalability properties. We compare and evaluate our flexible window-based scheduling methods using both synthetic and real-world test cases, validating the correctness and scalability of our implementation. Furthermore, we use OMNET++ to validate the generated GCL schedules.
期刊介绍:
Papers published in Real-Time Systems cover, among others, the following topics: requirements engineering, specification and verification techniques, design methods and tools, programming languages, operating systems, scheduling algorithms, architecture, hardware and interfacing, dependability and safety, distributed and other novel architectures, wired and wireless communications, wireless sensor systems, distributed databases, artificial intelligence techniques, expert systems, and application case studies. Applications are found in command and control systems, process control, automated manufacturing, flight control, avionics, space avionics and defense systems, shipborne systems, vision and robotics, pervasive and ubiquitous computing, and in an abundance of embedded systems.