Potent and selective binders of the E3 ubiquitin ligase ZNRF3 stimulate Wnt signaling and intestinal organoid growth

IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Chemical Biology Pub Date : 2024-06-20 DOI:10.1016/j.chembiol.2023.11.006
Yvonne T. Kschonsak , Xinxin Gao , Stephen E. Miller , Sunhee Hwang , Hadir Marei , Ping Wu , Yanjie Li , Karen Ruiz , Kristel Dorighi , Loryn Holokai , Pirunthan Perampalam , Wen-Ting K. Tsai , Yee-Seir Kee , Nicholas J. Agard , Seth F. Harris , Rami N. Hannoush , Felipe de Sousa e Melo
{"title":"Potent and selective binders of the E3 ubiquitin ligase ZNRF3 stimulate Wnt signaling and intestinal organoid growth","authors":"Yvonne T. Kschonsak ,&nbsp;Xinxin Gao ,&nbsp;Stephen E. Miller ,&nbsp;Sunhee Hwang ,&nbsp;Hadir Marei ,&nbsp;Ping Wu ,&nbsp;Yanjie Li ,&nbsp;Karen Ruiz ,&nbsp;Kristel Dorighi ,&nbsp;Loryn Holokai ,&nbsp;Pirunthan Perampalam ,&nbsp;Wen-Ting K. Tsai ,&nbsp;Yee-Seir Kee ,&nbsp;Nicholas J. Agard ,&nbsp;Seth F. Harris ,&nbsp;Rami N. Hannoush ,&nbsp;Felipe de Sousa e Melo","doi":"10.1016/j.chembiol.2023.11.006","DOIUrl":null,"url":null,"abstract":"<div><p>Selective and precise activation of signaling transduction cascades is key for cellular reprogramming and tissue regeneration. However, the development of small- or large-molecule agonists for many signaling pathways has remained elusive and is rate limiting to realize the full clinical potential of regenerative medicine. Focusing on the Wnt pathway, here we describe a series of disulfide-constrained peptides (DCPs) that promote Wnt signaling activity by modulating the cell surface levels of ZNRF3, an E3 ubiquitin ligase that controls the abundance of the Wnt receptor complex FZD/LRP at the plasma membrane. Mechanistically, monomeric DCPs induce ZNRF3 ubiquitination, leading to its cell surface clearance, ultimately resulting in FZD stabilization. Furthermore, we engineered multimeric DCPs that induce expansive growth of human intestinal organoids, revealing a dependence between valency and ZNRF3 clearance. Our work highlights a strategy for the development of potent, biologically active Wnt signaling pathway agonists via targeting of ZNRF3.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 6","pages":"Pages 1176-1187.e10"},"PeriodicalIF":6.6000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245194562300421X","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Selective and precise activation of signaling transduction cascades is key for cellular reprogramming and tissue regeneration. However, the development of small- or large-molecule agonists for many signaling pathways has remained elusive and is rate limiting to realize the full clinical potential of regenerative medicine. Focusing on the Wnt pathway, here we describe a series of disulfide-constrained peptides (DCPs) that promote Wnt signaling activity by modulating the cell surface levels of ZNRF3, an E3 ubiquitin ligase that controls the abundance of the Wnt receptor complex FZD/LRP at the plasma membrane. Mechanistically, monomeric DCPs induce ZNRF3 ubiquitination, leading to its cell surface clearance, ultimately resulting in FZD stabilization. Furthermore, we engineered multimeric DCPs that induce expansive growth of human intestinal organoids, revealing a dependence between valency and ZNRF3 clearance. Our work highlights a strategy for the development of potent, biologically active Wnt signaling pathway agonists via targeting of ZNRF3.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
E3泛素连接酶ZNRF3的强效和选择性结合物刺激Wnt信号传导和肠道类器官生长。
信号转导级联的选择性和精确激活是细胞重编程和组织再生的关键。然而,用于许多信号通路的小分子或大分子激动剂的开发仍然难以捉摸,并且限制了再生医学充分发挥临床潜力的速度。关注Wnt通路,我们描述了一系列二硫约束肽(dcp),它们通过调节ZNRF3的细胞表面水平来促进Wnt信号活性,ZNRF3是一种E3泛素连接酶,控制质膜上Wnt受体复合物FZD/LRP的丰度。从机制上讲,单体dcp诱导ZNRF3泛素化,导致其细胞表面清除,最终导致FZD稳定。此外,我们设计了多聚dcp,诱导人类肠道类器官的扩张生长,揭示了价与ZNRF3清除之间的依赖关系。我们的工作强调了通过靶向ZNRF3开发有效的、具有生物活性的Wnt信号通路激动剂的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Chemical Biology
Cell Chemical Biology Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
14.70
自引率
2.30%
发文量
143
期刊介绍: Cell Chemical Biology, a Cell Press journal established in 1994 as Chemistry & Biology, focuses on publishing crucial advances in chemical biology research with broad appeal to our diverse community, spanning basic scientists to clinicians. Pioneering investigations at the chemistry-biology interface, the journal fosters collaboration between these disciplines. We encourage submissions providing significant conceptual advancements of broad interest across chemical, biological, clinical, and related fields. Particularly sought are articles utilizing chemical tools to perturb, visualize, and measure biological systems, offering unique insights into molecular mechanisms, disease biology, and therapeutics.
期刊最新文献
Discovery of antibacterial diketones against gram-positive bacteria. Decoding retrons: Breakthroughs in RT-DNA production and genome editing NAD reloaded: Hacking bacterial defenses A yeast-based oral therapeutic delivers immune checkpoint inhibitors to reduce intestinal tumor burden Host specific sphingomyelin is critical for replication of diverse RNA viruses
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1