Pub Date : 2024-08-15DOI: 10.1016/j.chembiol.2024.03.004
Adhesion G protein-coupled receptor (aGPCR) signaling influences development and homeostasis in a wide range of tissues. In the current model for aGPCR signaling, ligand binding liberates a conserved sequence that acts as an intramolecular, tethered agonist (TA), yet this model has not been evaluated systematically for all aGPCRs. Here, we assessed the TA-dependent activities of all 33 aGPCRs in a suite of transcriptional reporter, G protein activation, and β-arrestin recruitment assays using a new fusion protein platform. Strikingly, only ∼50% of aGPCRs exhibited robust TA-dependent activation, and unlike other GPCR families, aGPCRs showed a notable preference for G12/13 signaling. AlphaFold2 predictions assessing TA engagement in the predicted intramolecular binding pocket aligned with the TA dependence of the cellular responses. This dataset provides a comprehensive resource to inform the investigation of all human aGPCRs and for targeting aGPCRs therapeutically.
粘附 G 蛋白偶联受体(aGPCR)信号传导影响着多种组织的发育和稳态。在目前的 aGPCR 信号传导模型中,配体结合会释放出一个保守序列,该序列可充当分子内的系链激动剂(TA),但这一模型尚未针对所有 aGPCR 进行过系统评估。在这里,我们利用一个新的融合蛋白平台,在一系列转录报告、G 蛋白激活和 β - 逮捕素招募试验中评估了所有 33 个 aGPCR 的 TA 依赖性活性。令人吃惊的是,只有 50% 的 aGPCR 表现出强大的 TA 依赖性激活,而且与其他 GPCR 家族不同,aGPCR 对 G12/13 信号转导表现出明显的偏好。AlphaFold2 预测评估了 TA 在预测的分子内结合口袋中的参与情况,这与细胞反应的 TA 依赖性相一致。该数据集提供了一个全面的资源,为研究所有人类 aGPCRs 和治疗 aGPCRs 提供了信息。
{"title":"Heterogeneity of tethered agonist signaling in adhesion G protein-coupled receptors","authors":"","doi":"10.1016/j.chembiol.2024.03.004","DOIUrl":"10.1016/j.chembiol.2024.03.004","url":null,"abstract":"<div><p><span><span><span>Adhesion G protein-coupled receptor (aGPCR) signaling influences development and homeostasis<span> in a wide range of tissues. In the current model for aGPCR signaling, ligand binding liberates a </span></span>conserved sequence<span> that acts as an intramolecular, tethered agonist (TA), yet this model has not been evaluated systematically for all aGPCRs. Here, we assessed the TA-dependent activities of all 33 aGPCRs in a suite of transcriptional reporter, G protein activation, and β-arrestin recruitment assays using a new </span></span>fusion protein platform. Strikingly, only ∼50% of aGPCRs exhibited robust TA-dependent activation, and unlike other GPCR families, aGPCRs showed a notable preference for G</span><sub>12/13</sub> signaling. AlphaFold2 predictions assessing TA engagement in the predicted intramolecular binding pocket aligned with the TA dependence of the cellular responses. This dataset provides a comprehensive resource to inform the investigation of all human aGPCRs and for targeting aGPCRs therapeutically.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 8","pages":"Pages 1542-1553.e4"},"PeriodicalIF":6.6,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140622936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1016/j.chembiol.2024.03.011
Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules consisting of two ligands joined by a linker, enabling them to simultaneously bind with an E3 ligase and a protein of interest (POI) and trigger proteasomal degradation of the POI. Limitations of PROTAC include lack of potent E3 ligands, poor cell selectivity, and low permeability. AS1411 is an antitumor aptamer specifically recognizing a membrane-nucleus shuttling nucleolin (NCL). Here, we repurpose AS1411 as a ligand for an E3 ligase mouse double minute 2 homolog (MDM2) via anchoring the NCL-MDM2 complex. Then, we construct an AS1411-NCL-MDM2-based PROTAC (ANM-PROTAC) by conjugating AS1411 with large-molecular-weight ligands for “undruggable” oncogenic STAT3, c-Myc, p53-R175H, and AR-V7. We show that the ANM-PROTAC efficiently penetrates tumor cells, recruits MDM2 and degrades the POIs. The ANM-PROTAC achieves tumor-selective distribution and exhibits excellent antitumor activity with no systemic toxicity. This is a PROTAC with built-in tumor-targeting and cell-penetrating capacities.
{"title":"Repurposing AS1411 for constructing ANM-PROTACs","authors":"","doi":"10.1016/j.chembiol.2024.03.011","DOIUrl":"10.1016/j.chembiol.2024.03.011","url":null,"abstract":"<div><p>Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules consisting of two ligands joined by a linker, enabling them to simultaneously bind with an E3 ligase and a protein of interest (POI) and trigger proteasomal degradation of the POI. Limitations of PROTAC include lack of potent E3 ligands, poor cell selectivity, and low permeability. AS1411 is an antitumor aptamer specifically recognizing a membrane-nucleus shuttling nucleolin (NCL). Here, we repurpose AS1411 as a ligand for an E3 ligase mouse double minute 2 homolog (MDM2) via anchoring the NCL-MDM2 complex. Then, we construct an AS1411-NCL-MDM2-based PROTAC (ANM-PROTAC) by conjugating AS1411 with large-molecular-weight ligands for “undruggable” oncogenic STAT3, c-Myc, p53-R175H, and AR-V7. We show that the ANM-PROTAC efficiently penetrates tumor cells, recruits MDM2 and degrades the POIs. The ANM-PROTAC achieves tumor-selective distribution and exhibits excellent antitumor activity with no systemic toxicity. This is a PROTAC with built-in tumor-targeting and cell-penetrating capacities.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 7","pages":"Pages 1290-1304.e7"},"PeriodicalIF":6.6,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140637617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1016/j.chembiol.2024.02.002
The hedgehog (Hh) signaling pathway has long been a hotspot for anti-cancer drug development due to its important role in cell proliferation and tumorigenesis. However, most clinically available Hh pathway inhibitors target the seven-transmembrane region (7TM) of smoothened (SMO), and the acquired drug resistance is an urgent problem in SMO inhibitory therapy. Here, we identify a sterol analog Q29 and show that it can inhibit the Hh pathway through binding to the cysteine-rich domain (CRD) of SMO and blocking its cholesterylation. Q29 suppresses Hh signaling-dependent cell proliferation and arrests Hh-dependent medulloblastoma growth. Q29 exhibits an additive inhibitory effect on medulloblastoma with vismodegib, a clinically used SMO-7TM inhibitor for treating basal cell carcinoma (BCC). Importantly, Q29 overcomes resistance caused by SMO mutants against SMO-7TM inhibitors and inhibits the activity of SMO oncogenic variants. Our work demonstrates that the SMO-CRD inhibitor can be a new way to treat Hh pathway-driven cancers.
由于在细胞增殖和肿瘤发生中的重要作用,刺猬(Hh)信号通路一直是抗癌药物研发的热点。然而,临床上现有的Hh通路抑制剂大多以平滑肌(SMO)的七跨膜区(7TM)为靶点,获得性耐药性是SMO抑制疗法亟待解决的问题。在这里,我们发现了一种甾醇类似物 Q29,并证明它能通过与 SMO 的富半胱氨酸结构域(CRD)结合并阻断其胆固醇化来抑制 Hh 通路。Q29 可抑制 Hh 信号依赖性细胞增殖,并抑制 Hh 依赖性髓母细胞瘤的生长。Q29 与临床上用于治疗基底细胞癌(BCC)的 SMO-7TM 抑制剂 vismodegib 对髓母细胞瘤具有相加抑制作用。重要的是,Q29 能克服 SMO 突变体对 SMO-7TM 抑制剂产生的抗药性,并抑制 SMO 致癌变体的活性。我们的工作表明,SMO-CRD抑制剂可以成为治疗Hh通路驱动的癌症的一种新方法。
{"title":"A sterol analog inhibits hedgehog pathway by blocking cholesterylation of smoothened","authors":"","doi":"10.1016/j.chembiol.2024.02.002","DOIUrl":"10.1016/j.chembiol.2024.02.002","url":null,"abstract":"<div><p>The hedgehog (Hh) signaling pathway has long been a hotspot for anti-cancer drug development due to its important role in cell proliferation and tumorigenesis. However, most clinically available Hh pathway inhibitors target the seven-transmembrane region (7TM) of smoothened (SMO), and the acquired drug resistance is an urgent problem in SMO inhibitory therapy. Here, we identify a sterol analog Q29 and show that it can inhibit the Hh pathway through binding to the cysteine-rich domain (CRD) of SMO and blocking its cholesterylation. Q29 suppresses Hh signaling-dependent cell proliferation and arrests Hh-dependent medulloblastoma growth. Q29 exhibits an additive inhibitory effect on medulloblastoma with vismodegib, a clinically used SMO-7TM inhibitor for treating basal cell carcinoma (BCC). Importantly, Q29 overcomes resistance caused by SMO mutants against SMO-7TM inhibitors and inhibits the activity of SMO oncogenic variants. Our work demonstrates that the SMO-CRD inhibitor can be a new way to treat Hh pathway-driven cancers.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 7","pages":"Pages 1264-1276.e7"},"PeriodicalIF":6.6,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S245194562400076X/pdfft?md5=9fca5500f416c04fdc676ebd0ebc03ad&pid=1-s2.0-S245194562400076X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140038450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1016/j.chembiol.2023.12.019
Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are a class of cancer drugs that enzymatically inhibit PARP activity at sites of DNA damage. Yet, PARPi function mainly by trapping PARP1 onto DNA with a wide range of potency among the clinically relevant inhibitors. How PARPi trap and why some are better trappers remain unknown. Here, we show trapping occurs primarily through a kinetic phenomenon at sites of DNA damage that correlates with PARPi koff. Our results suggest PARP trapping is not the physical stalling of PARP1 on DNA, rather the high probability of PARP re-binding damaged DNA in the absence of other DNA-binding protein recruitment. These results clarify how PARPi trap, shed new light on how PARPi function, and describe how PARPi properties correlate to trapping potency.
聚(ADP-核糖)聚合酶(PARP)抑制剂(PARPi)是一类抗癌药物,可在 DNA 损伤部位酶促抑制 PARP 的活性。然而,PARPi 主要通过将 PARP1 诱捕到 DNA 上而发挥作用,在临床相关的抑制剂中,PARPi 的效力差异很大。PARPi 如何捕获以及为什么有些捕获效果更好仍是未知数。在这里,我们发现捕获主要是通过 DNA 损伤部位的动力学现象发生的,这种动力学现象与 PARPi koff 相关。我们的研究结果表明,PARP 捕捉不是 PARP1 在 DNA 上的物理停滞,而是在没有其他 DNA 结合蛋白招募的情况下,PARP 重新结合受损 DNA 的高概率。这些结果澄清了 PARPi 如何捕获,为 PARPi 如何发挥作用提供了新的思路,并描述了 PARPi 的特性与捕获效力之间的关系。
{"title":"PARP trapping is governed by the PARP inhibitor dissociation rate constant","authors":"","doi":"10.1016/j.chembiol.2023.12.019","DOIUrl":"10.1016/j.chembiol.2023.12.019","url":null,"abstract":"<div><p><span><span>Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are a class of cancer drugs that enzymatically inhibit PARP activity at sites of </span>DNA<span><span> damage. Yet, PARPi function mainly by trapping PARP1 onto </span>DNA with a wide range of potency among the clinically relevant inhibitors. How PARPi trap and why some are better trappers remain unknown. Here, we show trapping occurs primarily through a kinetic phenomenon at sites of DNA damage that correlates with PARPi k</span></span><sub>off</sub>. Our results suggest PARP trapping is not the physical stalling of PARP1 on DNA, rather the high probability of PARP re-binding damaged DNA in the absence of other DNA-binding protein recruitment. These results clarify how PARPi trap, shed new light on how PARPi function, and describe how PARPi properties correlate to trapping potency.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 7","pages":"Pages 1373-1382.e10"},"PeriodicalIF":6.6,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139518924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-18DOI: 10.1016/j.chembiol.2024.01.009
Stem cells remain quiescent in vivo and become activated in response to external stimuli. However, the mechanism regulating the quiescence-activation balance of bone-marrow-derived mesenchymal stem cells (BM-MSCs) is still unclear. Herein, we demonstrated that CYP7B1 was the common critical molecule that promoted activation and impeded quiescence of BM-MSCs under inflammatory stimulation. Mechanistically, CYP7B1 degrades 25-hydroxycholesterol (25-HC) into 7α,25-dihydroxycholesterol (7α,25-OHC), which alleviates the quiescence maintenance effect of 25-HC through Notch3 signaling pathway activation. CYP7B1 expression in BM-MSCs was regulated by NF-κB p65 under inflammatory conditions. BM-MSCs from CYP7B1 conditional knockout (CKO) mice had impaired activation abilities, relating to the delayed healing of bone defects. Intravenous infusion of BM-MSCs overexpressing CYP7B1 could improve the pathological scores of mice with collagen-induced arthritis. These results clarified the quiescence-activation regulatory mechanism of BM-MSCs through the NF-κB p65-CYP7B1-Notch3 axis and provided insight into enhancing BM-MSCs biological function as well as the subsequent therapeutic effect.
{"title":"CYP7B1-mediated 25-hydroxycholesterol degradation maintains quiescence-activation balance and improves therapeutic potential of mesenchymal stem cells","authors":"","doi":"10.1016/j.chembiol.2024.01.009","DOIUrl":"10.1016/j.chembiol.2024.01.009","url":null,"abstract":"<div><p>Stem cells remain quiescent <em>in vivo</em> and become activated in response to external stimuli. However, the mechanism regulating the quiescence-activation balance of bone-marrow-derived mesenchymal stem cells (BM-MSCs) is still unclear. Herein, we demonstrated that CYP7B1 was the common critical molecule that promoted activation and impeded quiescence of BM-MSCs under inflammatory stimulation. Mechanistically, CYP7B1 degrades 25-hydroxycholesterol (25-HC) into 7α,25-dihydroxycholesterol (7α,25-OHC), which alleviates the quiescence maintenance effect of 25-HC through Notch3 signaling pathway activation. CYP7B1 expression in BM-MSCs was regulated by NF-κB p65 under inflammatory conditions. BM-MSCs from CYP7B1 conditional knockout (CKO) mice had impaired activation abilities, relating to the delayed healing of bone defects. Intravenous infusion of BM-MSCs overexpressing CYP7B1 could improve the pathological scores of mice with collagen-induced arthritis. These results clarified the quiescence-activation regulatory mechanism of BM-MSCs through the NF-κB p65-CYP7B1-Notch3 axis and provided insight into enhancing BM-MSCs biological function as well as the subsequent therapeutic effect.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 7","pages":"Pages 1277-1289.e7"},"PeriodicalIF":6.6,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S245194562400045X/pdfft?md5=2bea7d0b66678d99d585b4f6835df184&pid=1-s2.0-S245194562400045X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139916158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1016/j.chembiol.2023.11.006
Yvonne T. Kschonsak , Xinxin Gao , Stephen E. Miller , Sunhee Hwang , Hadir Marei , Ping Wu , Yanjie Li , Karen Ruiz , Kristel Dorighi , Loryn Holokai , Pirunthan Perampalam , Wen-Ting K. Tsai , Yee-Seir Kee , Nicholas J. Agard , Seth F. Harris , Rami N. Hannoush , Felipe de Sousa e Melo
Selective and precise activation of signaling transduction cascades is key for cellular reprogramming and tissue regeneration. However, the development of small- or large-molecule agonists for many signaling pathways has remained elusive and is rate limiting to realize the full clinical potential of regenerative medicine. Focusing on the Wnt pathway, here we describe a series of disulfide-constrained peptides (DCPs) that promote Wnt signaling activity by modulating the cell surface levels of ZNRF3, an E3 ubiquitin ligase that controls the abundance of the Wnt receptor complex FZD/LRP at the plasma membrane. Mechanistically, monomeric DCPs induce ZNRF3 ubiquitination, leading to its cell surface clearance, ultimately resulting in FZD stabilization. Furthermore, we engineered multimeric DCPs that induce expansive growth of human intestinal organoids, revealing a dependence between valency and ZNRF3 clearance. Our work highlights a strategy for the development of potent, biologically active Wnt signaling pathway agonists via targeting of ZNRF3.
{"title":"Potent and selective binders of the E3 ubiquitin ligase ZNRF3 stimulate Wnt signaling and intestinal organoid growth","authors":"Yvonne T. Kschonsak , Xinxin Gao , Stephen E. Miller , Sunhee Hwang , Hadir Marei , Ping Wu , Yanjie Li , Karen Ruiz , Kristel Dorighi , Loryn Holokai , Pirunthan Perampalam , Wen-Ting K. Tsai , Yee-Seir Kee , Nicholas J. Agard , Seth F. Harris , Rami N. Hannoush , Felipe de Sousa e Melo","doi":"10.1016/j.chembiol.2023.11.006","DOIUrl":"10.1016/j.chembiol.2023.11.006","url":null,"abstract":"<div><p>Selective and precise activation of signaling transduction cascades is key for cellular reprogramming and tissue regeneration. However, the development of small- or large-molecule agonists for many signaling pathways has remained elusive and is rate limiting to realize the full clinical potential of regenerative medicine. Focusing on the Wnt pathway, here we describe a series of disulfide-constrained peptides (DCPs) that promote Wnt signaling activity by modulating the cell surface levels of ZNRF3, an E3 ubiquitin ligase that controls the abundance of the Wnt receptor complex FZD/LRP at the plasma membrane. Mechanistically, monomeric DCPs induce ZNRF3 ubiquitination, leading to its cell surface clearance, ultimately resulting in FZD stabilization. Furthermore, we engineered multimeric DCPs that induce expansive growth of human intestinal organoids, revealing a dependence between valency and ZNRF3 clearance. Our work highlights a strategy for the development of potent, biologically active Wnt signaling pathway agonists via targeting of ZNRF3.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 6","pages":"Pages 1176-1187.e10"},"PeriodicalIF":6.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138497378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1016/j.chembiol.2023.12.005
Mengchen Lu , Jianai Ji , Yifei Lv , Jing Zhao , Yuting Liu , Qiong Jiao , Tian Liu , Yi Mou , Qidong You , Zhengyu Jiang
Most BTB-containing E3 ligases homodimerize to recognize a single substrate by engaging multiple degrons, represented by E3 ligase KEAP1 dimer and its substrate NRF2. Inactivating KEAP1 to hinder ubiquitination-dependent NRF2 degradation activates NRF2. While various KEAP1 inhibitors have been reported, all reported inhibitors bind to KEAP1 in a monovalent fashion and activate NRF2 in a lagging manner. Herein, we report a unique bivalent KEAP1 inhibitor, biKEAP1 (3), that engages cellular KEAP1 dimer to directly release sequestered NRF2 protein, leading to an instant NRF2 activation. 3 promotes the nuclear translocation of NRF2, directly suppressing proinflammatory cytokine transcription. Data from in vivo experiments showed that 3, with unprecedented potency, reduced acute inflammatory burden in several acute inflammation models in a timely manner. Our findings demonstrate that the bivalent KEAP1 inhibitor can directly enable sequestered substrate NRF2 to suppress inflammatory transcription response and dampen various acute inflammation injuries.
{"title":"Bivalent inhibitors of the BTB E3 ligase KEAP1 enable instant NRF2 activation to suppress acute inflammatory response","authors":"Mengchen Lu , Jianai Ji , Yifei Lv , Jing Zhao , Yuting Liu , Qiong Jiao , Tian Liu , Yi Mou , Qidong You , Zhengyu Jiang","doi":"10.1016/j.chembiol.2023.12.005","DOIUrl":"10.1016/j.chembiol.2023.12.005","url":null,"abstract":"<div><p>Most BTB-containing E3 ligases homodimerize to recognize a single substrate by engaging multiple degrons, represented by E3 ligase KEAP1 dimer and its substrate NRF2. Inactivating KEAP1 to hinder ubiquitination-dependent NRF2 degradation activates NRF2. While various KEAP1 inhibitors have been reported, all reported inhibitors bind to KEAP1 in a monovalent fashion and activate NRF2 in a lagging manner. Herein, we report a unique bivalent KEAP1 inhibitor, biKEAP1 (<strong>3</strong>), that engages cellular KEAP1 dimer to directly release sequestered NRF2 protein, leading to an instant NRF2 activation. <strong>3</strong> promotes the nuclear translocation of NRF2, directly suppressing proinflammatory cytokine transcription. Data from <em>in vivo</em> experiments showed that <strong>3</strong>, with unprecedented potency, reduced acute inflammatory burden in several acute inflammation models in a timely manner. Our findings demonstrate that the bivalent KEAP1 inhibitor can directly enable sequestered substrate NRF2 to suppress inflammatory transcription response and dampen various acute inflammation injuries.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 6","pages":"Pages 1188-1202.e10"},"PeriodicalIF":6.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139059426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1016/j.chembiol.2024.01.002
Ling-Yan Su , Yang Tian , Qiang Zheng , Yu Cao , Mengyu Yao , Shuangping Wang , Wen Xu , Chuyu Xi , Andrea Clocchiatti , Guangjun Nie , Hejiang Zhou
The lysosome-targeting chimera (LYTAC) approach has shown promise for the targeted degradation of secreted and membrane proteins via lysosomes. However, there have been challenges in design, development, and targeting. Here, we have designed a genetically engineered transferrin receptor (TfR)-mediated lysosome-targeting chimera (TfR-LYTAC) that is efficiently internalized via TfR-mediate endocytosis and targets PD-L1 for lysosomal degradation in cultured cells but not in vivo due to short half-life and poor tumor targeting. A delivery platform was developed by fusing TfR-LYTAC to the surface of bacterial outer membrane vesicles (OMVs). The engineered OMV-LYTAC combines PD-1/PD-L1 pathway inhibition with LYTAC and immune activation by bacterial OMVs. OMV-LYTAC significantly reduced tumor growth in vivo. We have provided a modular and simple genetic strategy for lysosomal degradation as well as a delivery platform for in vivo tumor targeting. The study paves the way for the targeting and degradation of extracellular proteins using the TfR-LYTAC system.
{"title":"Anti-tumor immunotherapy using engineered bacterial outer membrane vesicles fused to lysosome-targeting chimeras mediated by transferrin receptor","authors":"Ling-Yan Su , Yang Tian , Qiang Zheng , Yu Cao , Mengyu Yao , Shuangping Wang , Wen Xu , Chuyu Xi , Andrea Clocchiatti , Guangjun Nie , Hejiang Zhou","doi":"10.1016/j.chembiol.2024.01.002","DOIUrl":"10.1016/j.chembiol.2024.01.002","url":null,"abstract":"<div><p>The lysosome-targeting chimera (LYTAC) approach has shown promise for the targeted degradation of secreted and membrane proteins via lysosomes. However, there have been challenges in design, development, and targeting. Here, we have designed a genetically engineered transferrin receptor (TfR)-mediated lysosome-targeting chimera (TfR-LYTAC) that is efficiently internalized via TfR-mediate endocytosis and targets PD-L1 for lysosomal degradation in cultured cells but not <em>in vivo</em> due to short half-life and poor tumor targeting. A delivery platform was developed by fusing TfR-LYTAC to the surface of bacterial outer membrane vesicles (OMVs). The engineered OMV-LYTAC combines PD-1/PD-L1 pathway inhibition with LYTAC and immune activation by bacterial OMVs. OMV-LYTAC significantly reduced tumor growth <em>in vivo</em>. We have provided a modular and simple genetic strategy for lysosomal degradation as well as a delivery platform for <em>in vivo</em> tumor targeting. The study paves the way for the targeting and degradation of extracellular proteins using the TfR-LYTAC system.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 6","pages":"Pages 1219-1230.e5"},"PeriodicalIF":6.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139677098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1016/j.chembiol.2024.01.003
Saki Ichikawa , N. Connor Payne , Wenqing Xu , Chia-Fu Chang , Nandini Vallavoju , Spencer Frome , Hope A. Flaxman , Ralph Mazitschek , Christina M. Woo
Cereblon (CRBN) is an E3 ligase substrate adapter widely exploited for targeted protein degradation (TPD) strategies. However, achieving efficient and selective target degradation is a preeminent challenge with ligands that engage CRBN. Here, we report that the cyclimids, ligands derived from the C-terminal cyclic imide degrons of CRBN, exhibit distinct modes of interaction with CRBN and offer a facile approach for developing potent and selective bifunctional degraders. Quantitative TR-FRET-based characterization of 60 cyclimid degraders in binary and ternary complexes across different substrates revealed that ternary complex binding affinities correlated strongly with cellular degradation efficiency. Our studies establish the unique properties of the cyclimids as versatile warheads in TPD and a systematic biochemical approach for quantifying ternary complex formation to predict their cellular degradation activity, which together will accelerate the development of ligands that engage CRBN.
{"title":"The cyclimids: Degron-inspired cereblon binders for targeted protein degradation","authors":"Saki Ichikawa , N. Connor Payne , Wenqing Xu , Chia-Fu Chang , Nandini Vallavoju , Spencer Frome , Hope A. Flaxman , Ralph Mazitschek , Christina M. Woo","doi":"10.1016/j.chembiol.2024.01.003","DOIUrl":"10.1016/j.chembiol.2024.01.003","url":null,"abstract":"<div><p>Cereblon (CRBN) is an E3 ligase substrate adapter widely exploited for targeted protein degradation (TPD) strategies. However, achieving efficient and selective target degradation is a preeminent challenge with ligands that engage CRBN. Here, we report that the cyclimids, ligands derived from the C-terminal cyclic imide degrons of CRBN, exhibit distinct modes of interaction with CRBN and offer a facile approach for developing potent and selective bifunctional degraders. Quantitative TR-FRET-based characterization of 60 cyclimid degraders in binary and ternary complexes across different substrates revealed that ternary complex binding affinities correlated strongly with cellular degradation efficiency. Our studies establish the unique properties of the cyclimids as versatile warheads in TPD and a systematic biochemical approach for quantifying ternary complex formation to predict their cellular degradation activity, which together will accelerate the development of ligands that engage CRBN.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 6","pages":"Pages 1162-1175.e10"},"PeriodicalIF":6.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139690430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-20DOI: 10.1016/j.chembiol.2024.03.012
Steve D. Knutson , Benito F. Buksh , Sean W. Huth , Danielle C. Morgan , David W.C. MacMillan
Understanding the intricate network of biomolecular interactions that govern cellular processes is a fundamental pursuit in biology. Over the past decade, photocatalytic proximity labeling has emerged as one of the most powerful and versatile techniques for studying these interactions as well as uncovering subcellular trafficking patterns, drug mechanisms of action, and basic cellular physiology. In this article, we review the basic principles, methodologies, and applications of photocatalytic proximity labeling as well as examine its modern development into currently available platforms. We also discuss recent key studies that have successfully leveraged these technologies and importantly highlight current challenges faced by the field. Together, this review seeks to underscore the potential of photocatalysis in proximity labeling for enhancing our understanding of cell biology while also providing perspective on technological advances needed for future discovery.
{"title":"Current advances in photocatalytic proximity labeling","authors":"Steve D. Knutson , Benito F. Buksh , Sean W. Huth , Danielle C. Morgan , David W.C. MacMillan","doi":"10.1016/j.chembiol.2024.03.012","DOIUrl":"10.1016/j.chembiol.2024.03.012","url":null,"abstract":"<div><p>Understanding the intricate network of biomolecular interactions that govern cellular processes is a fundamental pursuit in biology. Over the past decade, photocatalytic proximity labeling has emerged as one of the most powerful and versatile techniques for studying these interactions as well as uncovering subcellular trafficking patterns, drug mechanisms of action, and basic cellular physiology. In this article, we review the basic principles, methodologies, and applications of photocatalytic proximity labeling as well as examine its modern development into currently available platforms. We also discuss recent key studies that have successfully leveraged these technologies and importantly highlight current challenges faced by the field. Together, this review seeks to underscore the potential of photocatalysis in proximity labeling for enhancing our understanding of cell biology while also providing perspective on technological advances needed for future discovery.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 6","pages":"Pages 1145-1161"},"PeriodicalIF":6.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140642872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}