首页 > 最新文献

Cell Chemical Biology最新文献

英文 中文
Heterogeneity of tethered agonist signaling in adhesion G protein-coupled receptors 粘附 G 蛋白偶联受体中系留激动剂信号的异质性
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-08-15 DOI: 10.1016/j.chembiol.2024.03.004

Adhesion G protein-coupled receptor (aGPCR) signaling influences development and homeostasis in a wide range of tissues. In the current model for aGPCR signaling, ligand binding liberates a conserved sequence that acts as an intramolecular, tethered agonist (TA), yet this model has not been evaluated systematically for all aGPCRs. Here, we assessed the TA-dependent activities of all 33 aGPCRs in a suite of transcriptional reporter, G protein activation, and β-arrestin recruitment assays using a new fusion protein platform. Strikingly, only ∼50% of aGPCRs exhibited robust TA-dependent activation, and unlike other GPCR families, aGPCRs showed a notable preference for G12/13 signaling. AlphaFold2 predictions assessing TA engagement in the predicted intramolecular binding pocket aligned with the TA dependence of the cellular responses. This dataset provides a comprehensive resource to inform the investigation of all human aGPCRs and for targeting aGPCRs therapeutically.

粘附 G 蛋白偶联受体(aGPCR)信号传导影响着多种组织的发育和稳态。在目前的 aGPCR 信号传导模型中,配体结合会释放出一个保守序列,该序列可充当分子内的系链激动剂(TA),但这一模型尚未针对所有 aGPCR 进行过系统评估。在这里,我们利用一个新的融合蛋白平台,在一系列转录报告、G 蛋白激活和 β - 逮捕素招募试验中评估了所有 33 个 aGPCR 的 TA 依赖性活性。令人吃惊的是,只有 50% 的 aGPCR 表现出强大的 TA 依赖性激活,而且与其他 GPCR 家族不同,aGPCR 对 G12/13 信号转导表现出明显的偏好。AlphaFold2 预测评估了 TA 在预测的分子内结合口袋中的参与情况,这与细胞反应的 TA 依赖性相一致。该数据集提供了一个全面的资源,为研究所有人类 aGPCRs 和治疗 aGPCRs 提供了信息。
{"title":"Heterogeneity of tethered agonist signaling in adhesion G protein-coupled receptors","authors":"","doi":"10.1016/j.chembiol.2024.03.004","DOIUrl":"10.1016/j.chembiol.2024.03.004","url":null,"abstract":"<div><p><span><span><span>Adhesion G protein-coupled receptor (aGPCR) signaling influences development and homeostasis<span> in a wide range of tissues. In the current model for aGPCR signaling, ligand binding liberates a </span></span>conserved sequence<span> that acts as an intramolecular, tethered agonist (TA), yet this model has not been evaluated systematically for all aGPCRs. Here, we assessed the TA-dependent activities of all 33 aGPCRs in a suite of transcriptional reporter, G protein activation, and β-arrestin recruitment assays using a new </span></span>fusion protein platform. Strikingly, only ∼50% of aGPCRs exhibited robust TA-dependent activation, and unlike other GPCR families, aGPCRs showed a notable preference for G</span><sub>12/13</sub> signaling. AlphaFold2 predictions assessing TA engagement in the predicted intramolecular binding pocket aligned with the TA dependence of the cellular responses. This dataset provides a comprehensive resource to inform the investigation of all human aGPCRs and for targeting aGPCRs therapeutically.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 8","pages":"Pages 1542-1553.e4"},"PeriodicalIF":6.6,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140622936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Repurposing AS1411 for constructing ANM-PROTACs 重新利用 AS1411 构建 ANM-PROTAC
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-18 DOI: 10.1016/j.chembiol.2024.03.011

Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules consisting of two ligands joined by a linker, enabling them to simultaneously bind with an E3 ligase and a protein of interest (POI) and trigger proteasomal degradation of the POI. Limitations of PROTAC include lack of potent E3 ligands, poor cell selectivity, and low permeability. AS1411 is an antitumor aptamer specifically recognizing a membrane-nucleus shuttling nucleolin (NCL). Here, we repurpose AS1411 as a ligand for an E3 ligase mouse double minute 2 homolog (MDM2) via anchoring the NCL-MDM2 complex. Then, we construct an AS1411-NCL-MDM2-based PROTAC (ANM-PROTAC) by conjugating AS1411 with large-molecular-weight ligands for “undruggable” oncogenic STAT3, c-Myc, p53-R175H, and AR-V7. We show that the ANM-PROTAC efficiently penetrates tumor cells, recruits MDM2 and degrades the POIs. The ANM-PROTAC achieves tumor-selective distribution and exhibits excellent antitumor activity with no systemic toxicity. This is a PROTAC with built-in tumor-targeting and cell-penetrating capacities.

蛋白水解靶向嵌合体(PROTACs)是由两个配体通过连接体连接而成的异功能分子,使其能够同时与E3连接酶和感兴趣的蛋白质(POI)结合,并触发POI的蛋白酶体降解。PROTAC 的局限性包括缺乏有效的 E3 配体、细胞选择性差和渗透性低。AS1411 是一种特异性识别膜-核穿梭核蛋白(NCL)的抗肿瘤配体。在这里,我们通过锚定 NCL-MDM2 复合物,将 AS1411 重新用作 E3 连接酶小鼠双分 2 同源物(MDM2)的配体。然后,我们通过将 AS1411 与 "不可药用 "致癌物质 STAT3、c-Myc、p53-R175H 和 AR-V7 的大分子量配体共轭,构建了基于 AS1411-NCL-MDM2 的 PROTAC(ANM-PROTAC)。我们的研究表明,ANM-PROTAC 能有效穿透肿瘤细胞,招募 MDM2 并降解 POIs。ANM-PROTAC 实现了肿瘤选择性分布,并表现出卓越的抗肿瘤活性,且无全身毒性。这是一种具有肿瘤靶向和细胞穿透能力的 PROTAC。
{"title":"Repurposing AS1411 for constructing ANM-PROTACs","authors":"","doi":"10.1016/j.chembiol.2024.03.011","DOIUrl":"10.1016/j.chembiol.2024.03.011","url":null,"abstract":"<div><p>Proteolysis-targeting chimeras (PROTACs) are heterobifunctional molecules consisting of two ligands joined by a linker, enabling them to simultaneously bind with an E3 ligase and a protein of interest (POI) and trigger proteasomal degradation of the POI. Limitations of PROTAC include lack of potent E3 ligands, poor cell selectivity, and low permeability. AS1411 is an antitumor aptamer specifically recognizing a membrane-nucleus shuttling nucleolin (NCL). Here, we repurpose AS1411 as a ligand for an E3 ligase mouse double minute 2 homolog (MDM2) via anchoring the NCL-MDM2 complex. Then, we construct an AS1411-NCL-MDM2-based PROTAC (ANM-PROTAC) by conjugating AS1411 with large-molecular-weight ligands for “undruggable” oncogenic STAT3, c-Myc, p53-R175H, and AR-V7. We show that the ANM-PROTAC efficiently penetrates tumor cells, recruits MDM2 and degrades the POIs. The ANM-PROTAC achieves tumor-selective distribution and exhibits excellent antitumor activity with no systemic toxicity. This is a PROTAC with built-in tumor-targeting and cell-penetrating capacities.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 7","pages":"Pages 1290-1304.e7"},"PeriodicalIF":6.6,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140637617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A sterol analog inhibits hedgehog pathway by blocking cholesterylation of smoothened 一种甾醇类似物通过阻断平滑肌的胆固醇化抑制刺猬通路。
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-18 DOI: 10.1016/j.chembiol.2024.02.002

The hedgehog (Hh) signaling pathway has long been a hotspot for anti-cancer drug development due to its important role in cell proliferation and tumorigenesis. However, most clinically available Hh pathway inhibitors target the seven-transmembrane region (7TM) of smoothened (SMO), and the acquired drug resistance is an urgent problem in SMO inhibitory therapy. Here, we identify a sterol analog Q29 and show that it can inhibit the Hh pathway through binding to the cysteine-rich domain (CRD) of SMO and blocking its cholesterylation. Q29 suppresses Hh signaling-dependent cell proliferation and arrests Hh-dependent medulloblastoma growth. Q29 exhibits an additive inhibitory effect on medulloblastoma with vismodegib, a clinically used SMO-7TM inhibitor for treating basal cell carcinoma (BCC). Importantly, Q29 overcomes resistance caused by SMO mutants against SMO-7TM inhibitors and inhibits the activity of SMO oncogenic variants. Our work demonstrates that the SMO-CRD inhibitor can be a new way to treat Hh pathway-driven cancers.

由于在细胞增殖和肿瘤发生中的重要作用,刺猬(Hh)信号通路一直是抗癌药物研发的热点。然而,临床上现有的Hh通路抑制剂大多以平滑肌(SMO)的七跨膜区(7TM)为靶点,获得性耐药性是SMO抑制疗法亟待解决的问题。在这里,我们发现了一种甾醇类似物 Q29,并证明它能通过与 SMO 的富半胱氨酸结构域(CRD)结合并阻断其胆固醇化来抑制 Hh 通路。Q29 可抑制 Hh 信号依赖性细胞增殖,并抑制 Hh 依赖性髓母细胞瘤的生长。Q29 与临床上用于治疗基底细胞癌(BCC)的 SMO-7TM 抑制剂 vismodegib 对髓母细胞瘤具有相加抑制作用。重要的是,Q29 能克服 SMO 突变体对 SMO-7TM 抑制剂产生的抗药性,并抑制 SMO 致癌变体的活性。我们的工作表明,SMO-CRD抑制剂可以成为治疗Hh通路驱动的癌症的一种新方法。
{"title":"A sterol analog inhibits hedgehog pathway by blocking cholesterylation of smoothened","authors":"","doi":"10.1016/j.chembiol.2024.02.002","DOIUrl":"10.1016/j.chembiol.2024.02.002","url":null,"abstract":"<div><p>The hedgehog (Hh) signaling pathway has long been a hotspot for anti-cancer drug development due to its important role in cell proliferation and tumorigenesis. However, most clinically available Hh pathway inhibitors target the seven-transmembrane region (7TM) of smoothened (SMO), and the acquired drug resistance is an urgent problem in SMO inhibitory therapy. Here, we identify a sterol analog Q29 and show that it can inhibit the Hh pathway through binding to the cysteine-rich domain (CRD) of SMO and blocking its cholesterylation. Q29 suppresses Hh signaling-dependent cell proliferation and arrests Hh-dependent medulloblastoma growth. Q29 exhibits an additive inhibitory effect on medulloblastoma with vismodegib, a clinically used SMO-7TM inhibitor for treating basal cell carcinoma (BCC). Importantly, Q29 overcomes resistance caused by SMO mutants against SMO-7TM inhibitors and inhibits the activity of SMO oncogenic variants. Our work demonstrates that the SMO-CRD inhibitor can be a new way to treat Hh pathway-driven cancers.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 7","pages":"Pages 1264-1276.e7"},"PeriodicalIF":6.6,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S245194562400076X/pdfft?md5=9fca5500f416c04fdc676ebd0ebc03ad&pid=1-s2.0-S245194562400076X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140038450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PARP trapping is governed by the PARP inhibitor dissociation rate constant PARP 诱捕受 PARP 抑制剂解离速率常数的控制
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-18 DOI: 10.1016/j.chembiol.2023.12.019

Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are a class of cancer drugs that enzymatically inhibit PARP activity at sites of DNA damage. Yet, PARPi function mainly by trapping PARP1 onto DNA with a wide range of potency among the clinically relevant inhibitors. How PARPi trap and why some are better trappers remain unknown. Here, we show trapping occurs primarily through a kinetic phenomenon at sites of DNA damage that correlates with PARPi koff. Our results suggest PARP trapping is not the physical stalling of PARP1 on DNA, rather the high probability of PARP re-binding damaged DNA in the absence of other DNA-binding protein recruitment. These results clarify how PARPi trap, shed new light on how PARPi function, and describe how PARPi properties correlate to trapping potency.

聚(ADP-核糖)聚合酶(PARP)抑制剂(PARPi)是一类抗癌药物,可在 DNA 损伤部位酶促抑制 PARP 的活性。然而,PARPi 主要通过将 PARP1 诱捕到 DNA 上而发挥作用,在临床相关的抑制剂中,PARPi 的效力差异很大。PARPi 如何捕获以及为什么有些捕获效果更好仍是未知数。在这里,我们发现捕获主要是通过 DNA 损伤部位的动力学现象发生的,这种动力学现象与 PARPi koff 相关。我们的研究结果表明,PARP 捕捉不是 PARP1 在 DNA 上的物理停滞,而是在没有其他 DNA 结合蛋白招募的情况下,PARP 重新结合受损 DNA 的高概率。这些结果澄清了 PARPi 如何捕获,为 PARPi 如何发挥作用提供了新的思路,并描述了 PARPi 的特性与捕获效力之间的关系。
{"title":"PARP trapping is governed by the PARP inhibitor dissociation rate constant","authors":"","doi":"10.1016/j.chembiol.2023.12.019","DOIUrl":"10.1016/j.chembiol.2023.12.019","url":null,"abstract":"<div><p><span><span>Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPi) are a class of cancer drugs that enzymatically inhibit PARP activity at sites of </span>DNA<span><span> damage. Yet, PARPi function mainly by trapping PARP1 onto </span>DNA with a wide range of potency among the clinically relevant inhibitors. How PARPi trap and why some are better trappers remain unknown. Here, we show trapping occurs primarily through a kinetic phenomenon at sites of DNA damage that correlates with PARPi k</span></span><sub>off</sub>. Our results suggest PARP trapping is not the physical stalling of PARP1 on DNA, rather the high probability of PARP re-binding damaged DNA in the absence of other DNA-binding protein recruitment. These results clarify how PARPi trap, shed new light on how PARPi function, and describe how PARPi properties correlate to trapping potency.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 7","pages":"Pages 1373-1382.e10"},"PeriodicalIF":6.6,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139518924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CYP7B1-mediated 25-hydroxycholesterol degradation maintains quiescence-activation balance and improves therapeutic potential of mesenchymal stem cells CYP7B1 介导的 25- 羟基胆固醇降解可维持静止-激活平衡,并提高间充质干细胞的治疗潜力
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-07-18 DOI: 10.1016/j.chembiol.2024.01.009

Stem cells remain quiescent in vivo and become activated in response to external stimuli. However, the mechanism regulating the quiescence-activation balance of bone-marrow-derived mesenchymal stem cells (BM-MSCs) is still unclear. Herein, we demonstrated that CYP7B1 was the common critical molecule that promoted activation and impeded quiescence of BM-MSCs under inflammatory stimulation. Mechanistically, CYP7B1 degrades 25-hydroxycholesterol (25-HC) into 7α,25-dihydroxycholesterol (7α,25-OHC), which alleviates the quiescence maintenance effect of 25-HC through Notch3 signaling pathway activation. CYP7B1 expression in BM-MSCs was regulated by NF-κB p65 under inflammatory conditions. BM-MSCs from CYP7B1 conditional knockout (CKO) mice had impaired activation abilities, relating to the delayed healing of bone defects. Intravenous infusion of BM-MSCs overexpressing CYP7B1 could improve the pathological scores of mice with collagen-induced arthritis. These results clarified the quiescence-activation regulatory mechanism of BM-MSCs through the NF-κB p65-CYP7B1-Notch3 axis and provided insight into enhancing BM-MSCs biological function as well as the subsequent therapeutic effect.

干细胞在体内保持静止状态,并在外界刺激下被激活。然而,调节骨髓间充质干细胞(BM-MSCs)静止-激活平衡的机制仍不清楚。在此,我们证明了CYP7B1是炎症刺激下促进骨髓间充质干细胞活化和阻碍其静止的共同关键分子。从机制上讲,CYP7B1可将25-羟基胆固醇(25-HC)降解为7α,25-二羟基胆固醇(7α,25-OHC),从而通过激活Notch3信号通路减轻25-HC的静止维持效应。在炎症条件下,CYP7B1在BM-间充质干细胞中的表达受NF-κB p65调控。CYP7B1条件性基因敲除(CKO)小鼠的骨髓间充质干细胞活化能力受损,这与骨缺损愈合延迟有关。静脉注射过表达 CYP7B1 的 BM-MSCs 可以改善胶原蛋白诱导的关节炎小鼠的病理评分。这些结果阐明了通过NF-κB p65-CYP7B1-Notch3轴对BM-间充质干细胞的静止-激活调控机制,并为增强BM-间充质干细胞的生物功能及其后续治疗效果提供了启示。
{"title":"CYP7B1-mediated 25-hydroxycholesterol degradation maintains quiescence-activation balance and improves therapeutic potential of mesenchymal stem cells","authors":"","doi":"10.1016/j.chembiol.2024.01.009","DOIUrl":"10.1016/j.chembiol.2024.01.009","url":null,"abstract":"<div><p>Stem cells remain quiescent <em>in vivo</em> and become activated in response to external stimuli. However, the mechanism regulating the quiescence-activation balance of bone-marrow-derived mesenchymal stem cells (BM-MSCs) is still unclear. Herein, we demonstrated that CYP7B1 was the common critical molecule that promoted activation and impeded quiescence of BM-MSCs under inflammatory stimulation. Mechanistically, CYP7B1 degrades 25-hydroxycholesterol (25-HC) into 7α,25-dihydroxycholesterol (7α,25-OHC), which alleviates the quiescence maintenance effect of 25-HC through Notch3 signaling pathway activation. CYP7B1 expression in BM-MSCs was regulated by NF-κB p65 under inflammatory conditions. BM-MSCs from CYP7B1 conditional knockout (CKO) mice had impaired activation abilities, relating to the delayed healing of bone defects. Intravenous infusion of BM-MSCs overexpressing CYP7B1 could improve the pathological scores of mice with collagen-induced arthritis. These results clarified the quiescence-activation regulatory mechanism of BM-MSCs through the NF-κB p65-CYP7B1-Notch3 axis and provided insight into enhancing BM-MSCs biological function as well as the subsequent therapeutic effect.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 7","pages":"Pages 1277-1289.e7"},"PeriodicalIF":6.6,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S245194562400045X/pdfft?md5=2bea7d0b66678d99d585b4f6835df184&pid=1-s2.0-S245194562400045X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139916158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potent and selective binders of the E3 ubiquitin ligase ZNRF3 stimulate Wnt signaling and intestinal organoid growth E3泛素连接酶ZNRF3的强效和选择性结合物刺激Wnt信号传导和肠道类器官生长。
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-20 DOI: 10.1016/j.chembiol.2023.11.006
Yvonne T. Kschonsak , Xinxin Gao , Stephen E. Miller , Sunhee Hwang , Hadir Marei , Ping Wu , Yanjie Li , Karen Ruiz , Kristel Dorighi , Loryn Holokai , Pirunthan Perampalam , Wen-Ting K. Tsai , Yee-Seir Kee , Nicholas J. Agard , Seth F. Harris , Rami N. Hannoush , Felipe de Sousa e Melo

Selective and precise activation of signaling transduction cascades is key for cellular reprogramming and tissue regeneration. However, the development of small- or large-molecule agonists for many signaling pathways has remained elusive and is rate limiting to realize the full clinical potential of regenerative medicine. Focusing on the Wnt pathway, here we describe a series of disulfide-constrained peptides (DCPs) that promote Wnt signaling activity by modulating the cell surface levels of ZNRF3, an E3 ubiquitin ligase that controls the abundance of the Wnt receptor complex FZD/LRP at the plasma membrane. Mechanistically, monomeric DCPs induce ZNRF3 ubiquitination, leading to its cell surface clearance, ultimately resulting in FZD stabilization. Furthermore, we engineered multimeric DCPs that induce expansive growth of human intestinal organoids, revealing a dependence between valency and ZNRF3 clearance. Our work highlights a strategy for the development of potent, biologically active Wnt signaling pathway agonists via targeting of ZNRF3.

信号转导级联的选择性和精确激活是细胞重编程和组织再生的关键。然而,用于许多信号通路的小分子或大分子激动剂的开发仍然难以捉摸,并且限制了再生医学充分发挥临床潜力的速度。关注Wnt通路,我们描述了一系列二硫约束肽(dcp),它们通过调节ZNRF3的细胞表面水平来促进Wnt信号活性,ZNRF3是一种E3泛素连接酶,控制质膜上Wnt受体复合物FZD/LRP的丰度。从机制上讲,单体dcp诱导ZNRF3泛素化,导致其细胞表面清除,最终导致FZD稳定。此外,我们设计了多聚dcp,诱导人类肠道类器官的扩张生长,揭示了价与ZNRF3清除之间的依赖关系。我们的工作强调了通过靶向ZNRF3开发有效的、具有生物活性的Wnt信号通路激动剂的策略。
{"title":"Potent and selective binders of the E3 ubiquitin ligase ZNRF3 stimulate Wnt signaling and intestinal organoid growth","authors":"Yvonne T. Kschonsak ,&nbsp;Xinxin Gao ,&nbsp;Stephen E. Miller ,&nbsp;Sunhee Hwang ,&nbsp;Hadir Marei ,&nbsp;Ping Wu ,&nbsp;Yanjie Li ,&nbsp;Karen Ruiz ,&nbsp;Kristel Dorighi ,&nbsp;Loryn Holokai ,&nbsp;Pirunthan Perampalam ,&nbsp;Wen-Ting K. Tsai ,&nbsp;Yee-Seir Kee ,&nbsp;Nicholas J. Agard ,&nbsp;Seth F. Harris ,&nbsp;Rami N. Hannoush ,&nbsp;Felipe de Sousa e Melo","doi":"10.1016/j.chembiol.2023.11.006","DOIUrl":"10.1016/j.chembiol.2023.11.006","url":null,"abstract":"<div><p>Selective and precise activation of signaling transduction cascades is key for cellular reprogramming and tissue regeneration. However, the development of small- or large-molecule agonists for many signaling pathways has remained elusive and is rate limiting to realize the full clinical potential of regenerative medicine. Focusing on the Wnt pathway, here we describe a series of disulfide-constrained peptides (DCPs) that promote Wnt signaling activity by modulating the cell surface levels of ZNRF3, an E3 ubiquitin ligase that controls the abundance of the Wnt receptor complex FZD/LRP at the plasma membrane. Mechanistically, monomeric DCPs induce ZNRF3 ubiquitination, leading to its cell surface clearance, ultimately resulting in FZD stabilization. Furthermore, we engineered multimeric DCPs that induce expansive growth of human intestinal organoids, revealing a dependence between valency and ZNRF3 clearance. Our work highlights a strategy for the development of potent, biologically active Wnt signaling pathway agonists via targeting of ZNRF3.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 6","pages":"Pages 1176-1187.e10"},"PeriodicalIF":6.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138497378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bivalent inhibitors of the BTB E3 ligase KEAP1 enable instant NRF2 activation to suppress acute inflammatory response BTB E3 连接酶 KEAP1 的双价抑制剂能瞬间激活 NRF2 以抑制急性炎症反应
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-20 DOI: 10.1016/j.chembiol.2023.12.005
Mengchen Lu , Jianai Ji , Yifei Lv , Jing Zhao , Yuting Liu , Qiong Jiao , Tian Liu , Yi Mou , Qidong You , Zhengyu Jiang

Most BTB-containing E3 ligases homodimerize to recognize a single substrate by engaging multiple degrons, represented by E3 ligase KEAP1 dimer and its substrate NRF2. Inactivating KEAP1 to hinder ubiquitination-dependent NRF2 degradation activates NRF2. While various KEAP1 inhibitors have been reported, all reported inhibitors bind to KEAP1 in a monovalent fashion and activate NRF2 in a lagging manner. Herein, we report a unique bivalent KEAP1 inhibitor, biKEAP1 (3), that engages cellular KEAP1 dimer to directly release sequestered NRF2 protein, leading to an instant NRF2 activation. 3 promotes the nuclear translocation of NRF2, directly suppressing proinflammatory cytokine transcription. Data from in vivo experiments showed that 3, with unprecedented potency, reduced acute inflammatory burden in several acute inflammation models in a timely manner. Our findings demonstrate that the bivalent KEAP1 inhibitor can directly enable sequestered substrate NRF2 to suppress inflammatory transcription response and dampen various acute inflammation injuries.

大多数含 BTB 的 E3 连接酶都是同源二聚体,通过与多个脱胶子接合来识别单一底物,E3 连接酶 KEAP1 二聚体及其底物 NRF2 就是其中的代表。使 KEAP1 失活以阻碍泛素依赖性 NRF2 降解,从而激活 NRF2。虽然已报道了多种 KEAP1 抑制剂,但所有报道的抑制剂都以单价方式与 KEAP1 结合,并以滞后方式激活 NRF2。在此,我们报告了一种独特的二价 KEAP1 抑制剂 biKEAP1 (3),它能与细胞 KEAP1 二聚体结合,直接释放被螯合的 NRF2 蛋白,从而立即激活 NRF2。3 能促进 NRF2 的核转位,直接抑制促炎细胞因子的转录。体内实验数据显示,3 以前所未有的效力及时减轻了多个急性炎症模型的急性炎症负担。我们的研究结果表明,二价 KEAP1 抑制剂能直接使螯合底物 NRF2 抑制炎症转录反应,减轻各种急性炎症损伤。
{"title":"Bivalent inhibitors of the BTB E3 ligase KEAP1 enable instant NRF2 activation to suppress acute inflammatory response","authors":"Mengchen Lu ,&nbsp;Jianai Ji ,&nbsp;Yifei Lv ,&nbsp;Jing Zhao ,&nbsp;Yuting Liu ,&nbsp;Qiong Jiao ,&nbsp;Tian Liu ,&nbsp;Yi Mou ,&nbsp;Qidong You ,&nbsp;Zhengyu Jiang","doi":"10.1016/j.chembiol.2023.12.005","DOIUrl":"10.1016/j.chembiol.2023.12.005","url":null,"abstract":"<div><p>Most BTB-containing E3 ligases homodimerize to recognize a single substrate by engaging multiple degrons, represented by E3 ligase KEAP1 dimer and its substrate NRF2. Inactivating KEAP1 to hinder ubiquitination-dependent NRF2 degradation activates NRF2. While various KEAP1 inhibitors have been reported, all reported inhibitors bind to KEAP1 in a monovalent fashion and activate NRF2 in a lagging manner. Herein, we report a unique bivalent KEAP1 inhibitor, biKEAP1 (<strong>3</strong>), that engages cellular KEAP1 dimer to directly release sequestered NRF2 protein, leading to an instant NRF2 activation. <strong>3</strong> promotes the nuclear translocation of NRF2, directly suppressing proinflammatory cytokine transcription. Data from <em>in vivo</em> experiments showed that <strong>3</strong>, with unprecedented potency, reduced acute inflammatory burden in several acute inflammation models in a timely manner. Our findings demonstrate that the bivalent KEAP1 inhibitor can directly enable sequestered substrate NRF2 to suppress inflammatory transcription response and dampen various acute inflammation injuries.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 6","pages":"Pages 1188-1202.e10"},"PeriodicalIF":6.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139059426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-tumor immunotherapy using engineered bacterial outer membrane vesicles fused to lysosome-targeting chimeras mediated by transferrin receptor 利用融合了转铁蛋白受体介导的溶酶体靶向嵌合体的工程细菌外膜囊泡进行抗肿瘤免疫疗法
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-20 DOI: 10.1016/j.chembiol.2024.01.002
Ling-Yan Su , Yang Tian , Qiang Zheng , Yu Cao , Mengyu Yao , Shuangping Wang , Wen Xu , Chuyu Xi , Andrea Clocchiatti , Guangjun Nie , Hejiang Zhou

The lysosome-targeting chimera (LYTAC) approach has shown promise for the targeted degradation of secreted and membrane proteins via lysosomes. However, there have been challenges in design, development, and targeting. Here, we have designed a genetically engineered transferrin receptor (TfR)-mediated lysosome-targeting chimera (TfR-LYTAC) that is efficiently internalized via TfR-mediate endocytosis and targets PD-L1 for lysosomal degradation in cultured cells but not in vivo due to short half-life and poor tumor targeting. A delivery platform was developed by fusing TfR-LYTAC to the surface of bacterial outer membrane vesicles (OMVs). The engineered OMV-LYTAC combines PD-1/PD-L1 pathway inhibition with LYTAC and immune activation by bacterial OMVs. OMV-LYTAC significantly reduced tumor growth in vivo. We have provided a modular and simple genetic strategy for lysosomal degradation as well as a delivery platform for in vivo tumor targeting. The study paves the way for the targeting and degradation of extracellular proteins using the TfR-LYTAC system.

溶酶体靶向嵌合体(LYTAC)方法有望通过溶酶体靶向降解分泌蛋白和膜蛋白。然而,在设计、开发和靶向方面一直存在挑战。在这里,我们设计了一种基因工程转铁蛋白受体(TfR)介导的溶酶体靶向嵌合体(TfR-LYTAC),该嵌合体可通过TfR介导的内吞作用高效内化,并在培养细胞中靶向PD-L1进行溶酶体降解,但由于半衰期短和肿瘤靶向性差,在体内并不适用。通过将 TfR-LYTAC 融合到细菌外膜囊泡 (OMV) 表面,开发出了一种递送平台。这种工程化的 OMV-LYTAC 将 PD-1/PD-L1 通路抑制与 LYTAC 以及细菌 OMV 的免疫激活结合在一起。OMV-LYTAC 能显著减少体内肿瘤的生长。我们为溶酶体降解提供了一种模块化的简单遗传策略,也为体内肿瘤靶向提供了一种递送平台。这项研究为利用 TfR-LYTAC 系统靶向和降解细胞外蛋白质铺平了道路。
{"title":"Anti-tumor immunotherapy using engineered bacterial outer membrane vesicles fused to lysosome-targeting chimeras mediated by transferrin receptor","authors":"Ling-Yan Su ,&nbsp;Yang Tian ,&nbsp;Qiang Zheng ,&nbsp;Yu Cao ,&nbsp;Mengyu Yao ,&nbsp;Shuangping Wang ,&nbsp;Wen Xu ,&nbsp;Chuyu Xi ,&nbsp;Andrea Clocchiatti ,&nbsp;Guangjun Nie ,&nbsp;Hejiang Zhou","doi":"10.1016/j.chembiol.2024.01.002","DOIUrl":"10.1016/j.chembiol.2024.01.002","url":null,"abstract":"<div><p>The lysosome-targeting chimera (LYTAC) approach has shown promise for the targeted degradation of secreted and membrane proteins via lysosomes. However, there have been challenges in design, development, and targeting. Here, we have designed a genetically engineered transferrin receptor (TfR)-mediated lysosome-targeting chimera (TfR-LYTAC) that is efficiently internalized via TfR-mediate endocytosis and targets PD-L1 for lysosomal degradation in cultured cells but not <em>in vivo</em> due to short half-life and poor tumor targeting. A delivery platform was developed by fusing TfR-LYTAC to the surface of bacterial outer membrane vesicles (OMVs). The engineered OMV-LYTAC combines PD-1/PD-L1 pathway inhibition with LYTAC and immune activation by bacterial OMVs. OMV-LYTAC significantly reduced tumor growth <em>in vivo</em>. We have provided a modular and simple genetic strategy for lysosomal degradation as well as a delivery platform for <em>in vivo</em> tumor targeting. The study paves the way for the targeting and degradation of extracellular proteins using the TfR-LYTAC system.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 6","pages":"Pages 1219-1230.e5"},"PeriodicalIF":6.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139677098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The cyclimids: Degron-inspired cereblon binders for targeted protein degradation 环亚胺:受 Degron 启发的脑龙结合剂,用于靶向降解蛋白质
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-20 DOI: 10.1016/j.chembiol.2024.01.003
Saki Ichikawa , N. Connor Payne , Wenqing Xu , Chia-Fu Chang , Nandini Vallavoju , Spencer Frome , Hope A. Flaxman , Ralph Mazitschek , Christina M. Woo

Cereblon (CRBN) is an E3 ligase substrate adapter widely exploited for targeted protein degradation (TPD) strategies. However, achieving efficient and selective target degradation is a preeminent challenge with ligands that engage CRBN. Here, we report that the cyclimids, ligands derived from the C-terminal cyclic imide degrons of CRBN, exhibit distinct modes of interaction with CRBN and offer a facile approach for developing potent and selective bifunctional degraders. Quantitative TR-FRET-based characterization of 60 cyclimid degraders in binary and ternary complexes across different substrates revealed that ternary complex binding affinities correlated strongly with cellular degradation efficiency. Our studies establish the unique properties of the cyclimids as versatile warheads in TPD and a systematic biochemical approach for quantifying ternary complex formation to predict their cellular degradation activity, which together will accelerate the development of ligands that engage CRBN.

脑龙(Cereblon,CRBN)是一种 E3 连接酶底物适配器,被广泛用于靶向蛋白质降解(TPD)策略。然而,实现高效和有选择性的目标降解是与 CRBN 结合的配体面临的一个突出挑战。在这里,我们报告了从 CRBN C 端环状亚胺脱胶子衍生的配体环亚胺,它们与 CRBN 的相互作用模式各不相同,为开发强效和选择性双功能降解剂提供了一种简便的方法。基于 TR-FRET 对不同底物的二元和三元复合物中的 60 种环亚胺降解剂进行定量表征后发现,三元复合物的结合亲和力与细胞降解效率密切相关。我们的研究确立了环亚胺作为 TPD 多用途弹头的独特性质,以及量化三元复合物形成以预测其细胞降解活性的系统生化方法,这两项研究将共同加速开发能与 CRBN 结合的配体。
{"title":"The cyclimids: Degron-inspired cereblon binders for targeted protein degradation","authors":"Saki Ichikawa ,&nbsp;N. Connor Payne ,&nbsp;Wenqing Xu ,&nbsp;Chia-Fu Chang ,&nbsp;Nandini Vallavoju ,&nbsp;Spencer Frome ,&nbsp;Hope A. Flaxman ,&nbsp;Ralph Mazitschek ,&nbsp;Christina M. Woo","doi":"10.1016/j.chembiol.2024.01.003","DOIUrl":"10.1016/j.chembiol.2024.01.003","url":null,"abstract":"<div><p>Cereblon (CRBN) is an E3 ligase substrate adapter widely exploited for targeted protein degradation (TPD) strategies. However, achieving efficient and selective target degradation is a preeminent challenge with ligands that engage CRBN. Here, we report that the cyclimids, ligands derived from the C-terminal cyclic imide degrons of CRBN, exhibit distinct modes of interaction with CRBN and offer a facile approach for developing potent and selective bifunctional degraders. Quantitative TR-FRET-based characterization of 60 cyclimid degraders in binary and ternary complexes across different substrates revealed that ternary complex binding affinities correlated strongly with cellular degradation efficiency. Our studies establish the unique properties of the cyclimids as versatile warheads in TPD and a systematic biochemical approach for quantifying ternary complex formation to predict their cellular degradation activity, which together will accelerate the development of ligands that engage CRBN.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 6","pages":"Pages 1162-1175.e10"},"PeriodicalIF":6.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139690430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current advances in photocatalytic proximity labeling 光催化近距离标记的最新进展
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-06-20 DOI: 10.1016/j.chembiol.2024.03.012
Steve D. Knutson , Benito F. Buksh , Sean W. Huth , Danielle C. Morgan , David W.C. MacMillan

Understanding the intricate network of biomolecular interactions that govern cellular processes is a fundamental pursuit in biology. Over the past decade, photocatalytic proximity labeling has emerged as one of the most powerful and versatile techniques for studying these interactions as well as uncovering subcellular trafficking patterns, drug mechanisms of action, and basic cellular physiology. In this article, we review the basic principles, methodologies, and applications of photocatalytic proximity labeling as well as examine its modern development into currently available platforms. We also discuss recent key studies that have successfully leveraged these technologies and importantly highlight current challenges faced by the field. Together, this review seeks to underscore the potential of photocatalysis in proximity labeling for enhancing our understanding of cell biology while also providing perspective on technological advances needed for future discovery.

了解支配细胞过程的错综复杂的生物分子相互作用网络是生物学的一项基本追求。在过去十年中,光催化近距离标记技术已成为研究这些相互作用以及揭示亚细胞贩运模式、药物作用机制和基本细胞生理学的最强大和最通用的技术之一。在本文中,我们将回顾光催化近距离标记的基本原理、方法和应用,并考察其在现有平台上的现代发展。我们还讨论了近期成功利用这些技术的关键研究,并着重强调了该领域目前面临的挑战。综上所述,本综述旨在强调光催化近距离标记技术在增进我们对细胞生物学的了解方面所具有的潜力,同时也为未来发现所需的技术进步提供了视角。
{"title":"Current advances in photocatalytic proximity labeling","authors":"Steve D. Knutson ,&nbsp;Benito F. Buksh ,&nbsp;Sean W. Huth ,&nbsp;Danielle C. Morgan ,&nbsp;David W.C. MacMillan","doi":"10.1016/j.chembiol.2024.03.012","DOIUrl":"10.1016/j.chembiol.2024.03.012","url":null,"abstract":"<div><p>Understanding the intricate network of biomolecular interactions that govern cellular processes is a fundamental pursuit in biology. Over the past decade, photocatalytic proximity labeling has emerged as one of the most powerful and versatile techniques for studying these interactions as well as uncovering subcellular trafficking patterns, drug mechanisms of action, and basic cellular physiology. In this article, we review the basic principles, methodologies, and applications of photocatalytic proximity labeling as well as examine its modern development into currently available platforms. We also discuss recent key studies that have successfully leveraged these technologies and importantly highlight current challenges faced by the field. Together, this review seeks to underscore the potential of photocatalysis in proximity labeling for enhancing our understanding of cell biology while also providing perspective on technological advances needed for future discovery.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 6","pages":"Pages 1145-1161"},"PeriodicalIF":6.6,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140642872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Chemical Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1