首页 > 最新文献

Cell Chemical Biology最新文献

英文 中文
Bioluminescence assay of lysine deacylase sirtuin activity 赖氨酸脱乙酰酶 sirtuin 活性的生物发光测定
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-07 DOI: 10.1016/j.chembiol.2024.10.006
Alexandria N. Van Scoyk, Orlando Antelope, Donald E. Ayer, Randall T. Peterson, Anthony D. Pomicter, Shawn C. Owen, Michael W. Deininger
Lysine acylation can direct protein function, localization, and interactions. Sirtuins deacylate lysine toward maintaining cellular homeostasis, and their aberrant expression contributes to the pathogenesis of multiple conditions, including cancer. Measuring sirtuins’ activity is essential to exploring their potential as therapeutic targets, but accurate quantification is challenging. We developed “SIRTify”, a high-sensitivity assay for measuring sirtuin activity in vitro and in vivo. SIRTify is based on a split-version of the NanoLuc luciferase consisting of a truncated, catalytically inactive N-terminal moiety (LgBiT) that complements with a high-affinity C-terminal peptide (p86) to form active luciferase. Acylation of two lysines within p86 disrupts binding to LgBiT and abates luminescence. Deacylation by sirtuins reestablishes p86 and restores binding, generating a luminescence signal proportional to sirtuin activity. Measurements accurately reflect reported sirtuin specificity for lysine-acylations and confirm the effects of sirtuin modulators. SIRTify quantifies lysine deacylation dynamics and may be adaptable to monitoring additional post-translational modifications.
赖氨酸酰化可指导蛋白质的功能、定位和相互作用。Sirtuins 对赖氨酸进行脱乙酰化,以维持细胞的平衡,而它们的异常表达则是包括癌症在内的多种疾病的发病机理之一。测量 Sirtuins 的活性对于探索其作为治疗靶点的潜力至关重要,但精确量化却很有挑战性。我们开发了 "SIRTify",这是一种用于测量体内外 sirtuin 活性的高灵敏度检测方法。SIRTify 基于 NanoLuc 荧光素酶的分裂版本,由一个截短的、无催化活性的 N 端分子(LgBiT)与一个高亲和力的 C 端肽(p86)互补形成活性荧光素酶。p86 中两个赖氨酸的酰化会破坏与 LgBiT 的结合并减弱荧光。sirtuin 的脱酰基作用可重建 p86 并恢复结合,从而产生与 sirtuin 活性成比例的发光信号。测量结果准确反映了所报道的 sirtuin 对赖氨酸酰化的特异性,并证实了 sirtuin 调节剂的作用。SIRTify 可量化赖氨酸脱酰化动态,并可用于监测其他翻译后修饰。
{"title":"Bioluminescence assay of lysine deacylase sirtuin activity","authors":"Alexandria N. Van Scoyk, Orlando Antelope, Donald E. Ayer, Randall T. Peterson, Anthony D. Pomicter, Shawn C. Owen, Michael W. Deininger","doi":"10.1016/j.chembiol.2024.10.006","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.10.006","url":null,"abstract":"Lysine acylation can direct protein function, localization, and interactions. Sirtuins deacylate lysine toward maintaining cellular homeostasis, and their aberrant expression contributes to the pathogenesis of multiple conditions, including cancer. Measuring sirtuins’ activity is essential to exploring their potential as therapeutic targets, but accurate quantification is challenging. We developed “SIRT<em>ify</em>”, a high-sensitivity assay for measuring sirtuin activity <em>in vitro</em> and <em>in vivo</em>. SIRT<em>ify</em> is based on a split-version of the NanoLuc luciferase consisting of a truncated, catalytically inactive N-terminal moiety (LgBiT) that complements with a high-affinity C-terminal peptide (p86) to form active luciferase. Acylation of two lysines within p86 disrupts binding to LgBiT and abates luminescence. Deacylation by sirtuins reestablishes p86 and restores binding, generating a luminescence signal proportional to sirtuin activity. Measurements accurately reflect reported sirtuin specificity for lysine-acylations and confirm the effects of sirtuin modulators. SIRT<em>ify</em> quantifies lysine deacylation dynamics and may be adaptable to monitoring additional post-translational modifications.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142594511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Next steps for targeted protein degradation 定向降解蛋白质的下一步行动
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-04 DOI: 10.1016/j.chembiol.2024.10.004
Mackenzie W. Krone, Craig M. Crews
Targeted protein degradation (TPD) has greatly advanced as a therapeutic strategy in the past two decades, and we are on the cusp of rationally designed protein degraders reaching clinical approval. Offering pharmacological advantages relative to occupancy-driven protein inhibition, chemical methods for regulating biomolecular proximity have provided opportunities to tackle disease-related targets that were undruggable. Despite the pre-clinical success of designed degraders and existence of clinical therapies that serendipitously utilize TPD, expansion of the TPD toolbox is necessary to identify and characterize the next generation of molecular degraders. Here we highlight three areas for continued growth in the field that should be prioritized: expansion of TPD platform with greater spatiotemporal precision, increased throughput of degrader synthesis, and optimization of cooperativity in chemically induced protein complexes. The future is bright for TPD in medicine, and we expect that innovative approaches will increase therapeutic applications of proximity-induced pharmacology.
作为一种治疗策略,靶向蛋白质降解(TPD)在过去二十年中取得了长足的进步,合理设计的蛋白质降解剂即将获得临床批准。与占位驱动的蛋白质抑制相比,调控生物分子邻近性的化学方法具有药理学优势,为解决以往无法药物治疗的疾病相关靶点提供了机会。尽管设计的降解剂在临床前取得了成功,而且临床疗法也偶然利用了 TPD,但仍有必要扩大 TPD 工具箱,以确定和描述下一代分子降解剂。在此,我们强调了该领域应优先持续发展的三个方面:以更高的时空精度扩展 TPD 平台、提高降解剂合成的通量以及优化化学诱导蛋白质复合物的合作性。TPD 在医学领域的前景一片光明,我们期待创新方法将增加近端诱导药理学的治疗应用。
{"title":"Next steps for targeted protein degradation","authors":"Mackenzie W. Krone, Craig M. Crews","doi":"10.1016/j.chembiol.2024.10.004","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.10.004","url":null,"abstract":"Targeted protein degradation (TPD) has greatly advanced as a therapeutic strategy in the past two decades, and we are on the cusp of rationally designed protein degraders reaching clinical approval. Offering pharmacological advantages relative to occupancy-driven protein inhibition, chemical methods for regulating biomolecular proximity have provided opportunities to tackle disease-related targets that were undruggable. Despite the pre-clinical success of designed degraders and existence of clinical therapies that serendipitously utilize TPD, expansion of the TPD toolbox is necessary to identify and characterize the next generation of molecular degraders. Here we highlight three areas for continued growth in the field that should be prioritized: expansion of TPD platform with greater spatiotemporal precision, increased throughput of degrader synthesis, and optimization of cooperativity in chemically induced protein complexes. The future is bright for TPD in medicine, and we expect that innovative approaches will increase therapeutic applications of proximity-induced pharmacology.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A LANA peptide inhibits tumor growth by inducing CHD4 protein cleavage and triggers cell death LANA 肽通过诱导 CHD4 蛋白裂解和引发细胞死亡来抑制肿瘤生长
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 DOI: 10.1016/j.chembiol.2024.10.003
Hiroki Miura, Kang-Hsin Wang, Tomoki Inagaki, Frank Chuang, Michiko Shimoda, Chie Izumiya, Tadashi Watanabe, Ryan R. Davis, Clifford G. Tepper, Somayeh Komaki, Ken-ichi Nakajima, Ashish Kumar, Yoshihiro Izumiya
Kaposi’s sarcoma-associated herpesvirus (KSHV) establishes a latent infection, and viral genes are poised to be transcribed in the latent chromatin. In the poised chromatins, KSHV latency-associated nuclear antigen (LANA) interacts with cellular chromodomain-helicase-DNA-binding protein 4 (CHD4) and inhibits viral promoter activation. CHD4 is known to regulate cell differentiation by preventing enhancers from activating promoters. Here, we identified a putative CHD4 inhibitor peptide (VGN73) from the LANA sequence corresponding to the LANA-CHD4 interaction surface. The VGN73 interacts with CHD4 at its PHD domain with a dissociation constant (KD) of 14 nM. Pre-treatment with VGN73 enhanced monocyte differentiation into macrophages and globally altered the repertoire of activated genes in U937 cells. Furthermore, the introduction of the peptide into the cancer cells induced caspase-mediated CHD4 cleavage, triggered cell death, and inhibited tumor growth in a xenograft mouse model. The VGN73 may facilitate cell differentiation therapy.
卡波西肉瘤相关疱疹病毒(KSHV)会形成潜伏感染,病毒基因在潜伏染色质中准备转录。在潜伏染色质中,KSHV 潜伏相关核抗原(LANA)与细胞染色质链-螺旋酶-DNA 结合蛋白 4(CHD4)相互作用,抑制病毒启动子的激活。众所周知,CHD4 通过阻止增强子激活启动子来调节细胞分化。在这里,我们从与 LANA-CHD4 相互作用表面相对应的 LANA 序列中鉴定出了一种推定的 CHD4 抑制肽(VGN73)。VGN73 与 CHD4 的 PHD 结构域相互作用,其解离常数 (KD) 为 14 nM。用 VGN73 预处理可促进单核细胞分化为巨噬细胞,并全面改变 U937 细胞中的活化基因。此外,在异种移植小鼠模型中,将该肽引入癌细胞可诱导Caspase介导的CHD4裂解,引发细胞死亡并抑制肿瘤生长。VGN73 可促进细胞分化疗法。
{"title":"A LANA peptide inhibits tumor growth by inducing CHD4 protein cleavage and triggers cell death","authors":"Hiroki Miura, Kang-Hsin Wang, Tomoki Inagaki, Frank Chuang, Michiko Shimoda, Chie Izumiya, Tadashi Watanabe, Ryan R. Davis, Clifford G. Tepper, Somayeh Komaki, Ken-ichi Nakajima, Ashish Kumar, Yoshihiro Izumiya","doi":"10.1016/j.chembiol.2024.10.003","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.10.003","url":null,"abstract":"Kaposi’s sarcoma-associated herpesvirus (KSHV) establishes a latent infection, and viral genes are poised to be transcribed in the latent chromatin. In the poised chromatins, KSHV latency-associated nuclear antigen (LANA) interacts with cellular chromodomain-helicase-DNA-binding protein 4 (CHD4) and inhibits viral promoter activation. CHD4 is known to regulate cell differentiation by preventing enhancers from activating promoters. Here, we identified a putative CHD4 inhibitor peptide (VGN73) from the LANA sequence corresponding to the LANA-CHD4 interaction surface. The VGN73 interacts with CHD4 at its PHD domain with a dissociation constant (K<sub>D</sub>) of 14 nM. Pre-treatment with VGN73 enhanced monocyte differentiation into macrophages and globally altered the repertoire of activated genes in U937 cells. Furthermore, the introduction of the peptide into the cancer cells induced caspase-mediated CHD4 cleavage, triggered cell death, and inhibited tumor growth in a xenograft mouse model. The VGN73 may facilitate cell differentiation therapy.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification of two repurposed drugs targeting GSDMD oligomerization interface I to block pyroptosis 鉴定两种以 GSDMD 寡聚界面 I 为靶点的再利用药物,以阻断焦细胞增多症
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-31 DOI: 10.1016/j.chembiol.2024.10.002
Yingchao Hu, Honghui Li, Xiangyu Zhang, Yuxian Song, Jun Liu, Jie Pu, Shuang Wen, Hongyang Xu, Hongliang Xin, Bingwei Wang, Shuo Yang
As an executor of pyroptosis, gasdermin D (GSDMD) plays a critical role in inflammatory diseases and cancer. Thus, GSDMD is currently being widely explored as a drug target. Existing inhibitors targeting GSDMD, such as necrosulfonamide, disulfiram, and fumarate, primarily prevent pyroptosis by modifying human/mouse C191/C192 in the N-terminal fragment of GSDMD. However, cysteine modification can prevent the function of important proteins or enzymes, thereby leading to adverse reactions. Here, we chose an alternative key intervention site for GSDMD activation, which is located at the oligomerization interface I of its pore-forming structure. Through high-throughput virtual and experimental screening and in combination with efficacy and pharmacological validation, we have identified two safe, specific “repurposed drugs” that potently suppress GSDMD-mediated pyroptosis. Moreover, the candidates exhibited synergistic therapeutic effects of “1 + 1>2” in murine sepsis and tumorigenesis models. These recently identified GSDMD inhibitors hold great promise for clinical translation in the development of anti-inflammatory and anti-cancer immunotherapies.
作为化脓过程的执行者,gasdermin D(GSDMD)在炎症性疾病和癌症中起着至关重要的作用。因此,GSDMD 目前正被作为药物靶点进行广泛研究。现有的以 GSDMD 为靶点的抑制剂,如新磺酰胺、二磺酰胺和富马酸盐,主要通过修饰 GSDMD N 端片段中的人/鼠 C191/C192 来阻止热蛋白沉积。然而,半胱氨酸修饰会妨碍重要蛋白质或酶的功能,从而导致不良反应。在此,我们选择了 GSDMD 激活的另一个关键干预位点,该位点位于其孔形成结构的寡聚界面 I。通过高通量虚拟和实验筛选,并结合药效和药理验证,我们发现了两种安全、特异的 "再利用药物",它们能有效抑制 GSDMD 介导的热蛋白沉积。此外,这些候选药物在小鼠败血症和肿瘤发生模型中表现出了 "1 + 1>2 "的协同治疗效果。这些最新发现的 GSDMD 抑制剂有望在抗炎和抗癌免疫疗法的开发中实现临床转化。
{"title":"Identification of two repurposed drugs targeting GSDMD oligomerization interface I to block pyroptosis","authors":"Yingchao Hu, Honghui Li, Xiangyu Zhang, Yuxian Song, Jun Liu, Jie Pu, Shuang Wen, Hongyang Xu, Hongliang Xin, Bingwei Wang, Shuo Yang","doi":"10.1016/j.chembiol.2024.10.002","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.10.002","url":null,"abstract":"As an executor of pyroptosis, gasdermin D (GSDMD) plays a critical role in inflammatory diseases and cancer. Thus, GSDMD is currently being widely explored as a drug target. Existing inhibitors targeting GSDMD, such as necrosulfonamide, disulfiram, and fumarate, primarily prevent pyroptosis by modifying human/mouse C191/C192 in the N-terminal fragment of GSDMD. However, cysteine modification can prevent the function of important proteins or enzymes, thereby leading to adverse reactions. Here, we chose an alternative key intervention site for GSDMD activation, which is located at the oligomerization interface I of its pore-forming structure. Through high-throughput virtual and experimental screening and in combination with efficacy and pharmacological validation, we have identified two safe, specific “repurposed drugs” that potently suppress GSDMD-mediated pyroptosis. Moreover, the candidates exhibited synergistic therapeutic effects of “1 + 1&gt;2” in murine sepsis and tumorigenesis models. These recently identified GSDMD inhibitors hold great promise for clinical translation in the development of anti-inflammatory and anti-cancer immunotherapies.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic sampling of a surveillance state enables DNA proofreading by Cas9 监控状态的动态取样使 Cas9 能够进行 DNA 校对
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-28 DOI: 10.1016/j.chembiol.2024.10.001
Viviane S. De Paula, Abhinav Dubey, Haribabu Arthanari, Nikolaos G. Sgourakis
CRISPR-Cas9 has revolutionized genome engineering applications by programming its single-guide RNA, where high specificity is required. However, the precise molecular mechanism underscoring discrimination between on/off-target DNA sequences, relative to the guide RNA template, remains elusive. Here, using methyl-based NMR to study multiple holoenzymes assembled in vitro, we elucidate a discrete protein conformational state which enables recognition of DNA mismatches at the protospacer adjacent motif (PAM)-distal end. Our results delineate an allosteric pathway connecting a dynamic conformational switch at the REC3 domain, with the sampling of a catalytically competent state by the HNH domain. Our NMR data show that HiFi Cas9 (R691A) increases the fidelity of DNA recognition by stabilizing this "surveillance state" for mismatched substrates, shifting the Cas9 conformational equilibrium away from the active state. These results establish a paradigm of substrate recognition through an allosteric protein-based switch, providing unique insights into the molecular mechanism which governs Cas9 selectivity.
CRISPR-Cas9 通过对需要高特异性的单导 RNA 进行编程,彻底改变了基因组工程应用。然而,相对于引导 RNA 模板而言,区分目标 DNA 序列的精确分子机制仍未确定。在这里,我们利用基于甲基的核磁共振技术研究了体外组装的多个全酶,阐明了一种离散的蛋白质构象状态,它能识别原间隔邻接基序(PAM)远端的 DNA 错配。我们的研究结果勾勒出了一条异构途径,它将 REC3 结构域的动态构象转换与 HNH 结构域的催化状态取样连接起来。我们的核磁共振数据显示,HiFi Cas9 (R691A)通过稳定这种针对不匹配底物的 "监视状态",使 Cas9 的构象平衡偏离活性状态,从而提高了 DNA 识别的保真度。这些结果建立了一种通过基于异构蛋白的开关来识别底物的范例,为研究支配 Cas9 选择性的分子机制提供了独特的见解。
{"title":"Dynamic sampling of a surveillance state enables DNA proofreading by Cas9","authors":"Viviane S. De Paula, Abhinav Dubey, Haribabu Arthanari, Nikolaos G. Sgourakis","doi":"10.1016/j.chembiol.2024.10.001","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.10.001","url":null,"abstract":"CRISPR-Cas9 has revolutionized genome engineering applications by programming its single-guide RNA, where high specificity is required. However, the precise molecular mechanism underscoring discrimination between on/off-target DNA sequences, relative to the guide RNA template, remains elusive. Here, using methyl-based NMR to study multiple holoenzymes assembled <em>in vitro</em>, we elucidate a discrete protein conformational state which enables recognition of DNA mismatches at the protospacer adjacent motif (PAM)-distal end. Our results delineate an allosteric pathway connecting a dynamic conformational switch at the REC3 domain, with the sampling of a catalytically competent state by the HNH domain. Our NMR data show that HiFi Cas9 (R691A) increases the fidelity of DNA recognition by stabilizing this \"surveillance state\" for mismatched substrates, shifting the Cas9 conformational equilibrium away from the active state. These results establish a paradigm of substrate recognition through an allosteric protein-based switch, providing unique insights into the molecular mechanism which governs Cas9 selectivity.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142519849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The liquid lectin array detects compositional glycocalyx differences using multivalent DNA-encoded lectins on phage 液体凝集素阵列利用噬菌体上的多价 DNA 编码凝集素检测糖萼的组成差异
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-24 DOI: 10.1016/j.chembiol.2024.09.010
Guilherme M. Lima, Zeinab Jame-Chenarboo, Mirat Sojitra, Susmita Sarkar, Eric J. Carpenter, Claire Y. Yang, Edward Schmidt, Justine Lai, Alexey Atrazhev, Danial Yazdan, Chuanhao Peng, Elizabeth A. Volker, Ray Ho, Gisele Monteiro, Raymond Lai, Lara K. Mahal, Matthew S. Macauley, Ratmir Derda
Selective detection of disease-associated changes in the glycocalyx is an emerging field in modern targeted therapies. Detecting minor glycan changes on the cell surface is a challenge exacerbated by the lack of correspondence between cellular DNA/RNA and glycan structures. We demonstrate that multivalent displays of lectins on DNA-barcoded phages—liquid lectin array (LiLA)—detect subtle differences in density of glycans on cells. LiLA constructs displaying 73 copies of diCBM40 (CBM) lectin per virion (φ-CBM73) exhibit non-linear ON/OFF-like recognition of sialoglycans on the surface of normal and cancer cells. A high-valency φ-CBM290 display, or soluble CBM protein, cannot amplify the subtle differences detected by φ-CBM73. Similarly, multivalent displays of CBM and Siglec-7 detect differences in the glycocalyx between stem-like and non-stem populations in cancer. Multivalent display of lectins offer in situ detection of minor differences in glycocalyx in cells both in vitro and in vivo not feasible to currently available technologies.
选择性检测糖萼中与疾病相关的变化是现代靶向疗法的一个新兴领域。由于细胞 DNA/RNA 与聚糖结构之间缺乏对应关系,因此检测细胞表面的微小聚糖变化是一项挑战。我们证明了 DNA 条形编码噬菌体上凝集素的多价显示--液体凝集素阵列(LiLA)--能检测到细胞上聚糖密度的细微差别。LiLA构建体在每个病毒粒子上显示73个diCBM40(CBM)凝集素拷贝(φ-CBM73),对正常细胞和癌细胞表面的硅聚糖进行非线性ON/OFF式识别。高活性的φ-CBM290 或可溶性 CBM 蛋白无法放大φ-CBM73 所检测到的微妙差异。同样,CBM 和 Siglec-7 的多价显示也能检测出癌症中干细胞和非干细胞之间糖萼的差异。凝集素的多价显示技术可在体外和体内原位检测细胞中糖萼的细微差别,这是目前可用的技术无法做到的。
{"title":"The liquid lectin array detects compositional glycocalyx differences using multivalent DNA-encoded lectins on phage","authors":"Guilherme M. Lima, Zeinab Jame-Chenarboo, Mirat Sojitra, Susmita Sarkar, Eric J. Carpenter, Claire Y. Yang, Edward Schmidt, Justine Lai, Alexey Atrazhev, Danial Yazdan, Chuanhao Peng, Elizabeth A. Volker, Ray Ho, Gisele Monteiro, Raymond Lai, Lara K. Mahal, Matthew S. Macauley, Ratmir Derda","doi":"10.1016/j.chembiol.2024.09.010","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.09.010","url":null,"abstract":"Selective detection of disease-associated changes in the glycocalyx is an emerging field in modern targeted therapies. Detecting minor glycan changes on the cell surface is a challenge exacerbated by the lack of correspondence between cellular DNA/RNA and glycan structures. We demonstrate that multivalent displays of lectins on DNA-barcoded phages—liquid lectin array (LiLA)—detect subtle differences in density of glycans on cells. LiLA constructs displaying 73 copies of diCBM40 (CBM) lectin per virion (φ-CBM<sub>73</sub>) exhibit non-linear ON/OFF-like recognition of sialoglycans on the surface of normal and cancer cells. A high-valency φ-CBM<sub>290</sub> display, or soluble CBM protein, cannot amplify the subtle differences detected by φ-CBM<sub>73</sub>. Similarly, multivalent displays of CBM and Siglec-7 detect differences in the glycocalyx between stem-like and non-stem populations in cancer. Multivalent display of lectins offer <em>in situ</em> detection of minor differences in glycocalyx in cells both <em>in vitro</em> and <em>in vivo</em> not feasible to currently available technologies.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142488902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNA infrastructure profiling illuminates transcriptome structure in crowded spaces RNA 基础结构剖析揭示拥挤空间中的转录组结构
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-23 DOI: 10.1016/j.chembiol.2024.09.009
Lu Xiao, Linglan Fang, Wenrui Zhong, Eric T. Kool
RNAs fold into compact structures and undergo protein interactions in cells. These occluded environments can block reagents that probe the underlying RNAs. Probes that can analyze structure in crowded settings can shed light on RNA biology. Here, we employ 2′-OH-reactive probes that are small enough to access folded RNA structure underlying close molecular contacts within cells, providing considerably broader coverage for intracellular RNA structural analysis. The data are analyzed first with well-characterized human ribosomal RNAs and then applied transcriptome-wide to polyadenylated transcripts. The smallest probe acetylimidazole (AcIm) yields 80% greater structural coverage than larger conventional reagent NAIN3, providing enhanced structural information in hundreds of transcripts. The acetyl probe also provides superior signals for identifying m6A modification sites in transcripts, particularly in sites that are inaccessible to a standard probe. Our strategy enables profiling RNA infrastructure, enhancing analysis of transcriptome structure, modification, and intracellular interactions, especially in spatially crowded settings.
RNA 在细胞中折叠成紧凑的结构,并与蛋白质发生相互作用。这些闭塞的环境会阻挡探测底层 RNA 的试剂。能在拥挤环境中分析结构的探针可以揭示 RNA 的生物学特性。在这里,我们采用的 2′-OH 反应探针足够小,可以进入细胞内分子接触紧密的底层折叠 RNA 结构,为细胞内 RNA 结构分析提供更广泛的覆盖范围。这些数据首先通过特性良好的人类核糖体 RNA 进行分析,然后应用于整个转录组的多聚腺苷酸转录本。最小的探针乙酰咪唑(AcIm)的结构覆盖率比较大的传统试剂 NAIN3 高出 80%,为数百个转录本提供了更多的结构信息。乙酰探针还能提供识别转录本中 m6A 修饰位点的卓越信号,尤其是在标准探针无法到达的位点。我们的策略能够剖析 RNA 基础结构,加强对转录本组结构、修饰和细胞内相互作用的分析,尤其是在空间拥挤的环境中。
{"title":"RNA infrastructure profiling illuminates transcriptome structure in crowded spaces","authors":"Lu Xiao, Linglan Fang, Wenrui Zhong, Eric T. Kool","doi":"10.1016/j.chembiol.2024.09.009","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.09.009","url":null,"abstract":"RNAs fold into compact structures and undergo protein interactions in cells. These occluded environments can block reagents that probe the underlying RNAs. Probes that can analyze structure in crowded settings can shed light on RNA biology. Here, we employ 2′-OH-reactive probes that are small enough to access folded RNA structure underlying close molecular contacts within cells, providing considerably broader coverage for intracellular RNA structural analysis. The data are analyzed first with well-characterized human ribosomal RNAs and then applied transcriptome-wide to polyadenylated transcripts. The smallest probe acetylimidazole (AcIm) yields 80% greater structural coverage than larger conventional reagent NAIN3, providing enhanced structural information in hundreds of transcripts. The acetyl probe also provides superior signals for identifying m<sup>6</sup>A modification sites in transcripts, particularly in sites that are inaccessible to a standard probe. Our strategy enables profiling RNA infrastructure, enhancing analysis of transcriptome structure, modification, and intracellular interactions, especially in spatially crowded settings.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipid availability influences ferroptosis sensitivity in cancer cells by regulating polyunsaturated fatty acid trafficking 脂质供应通过调节多不饱和脂肪酸的运输影响癌细胞对铁蛋白沉积的敏感性
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-22 DOI: 10.1016/j.chembiol.2024.09.008
Kelly H. Sokol, Cameron J. Lee, Thomas J. Rogers, Althea Waldhart, Abigail E. Ellis, Sahithi Madireddy, Samuel R. Daniels, Rachel (Rae) J. House, Xinyu Ye, Mary Olesnavich, Amy Johnson, Benjamin R. Furness, Ryan D. Sheldon, Evan C. Lien
Ferroptosis is a form of cell death caused by lipid peroxidation that is emerging as a target for cancer therapy, highlighting the need to identify factors that govern ferroptosis susceptibility. Lipid peroxidation occurs primarily on phospholipids containing polyunsaturated fatty acids (PUFAs). Here, we show that even though extracellular lipid limitation reduces cellular PUFA levels, lipid-starved cancer cells are paradoxically more sensitive to ferroptosis. Using mass spectrometry-based lipidomics with stable isotope fatty acid labeling, we show that lipid limitation induces a fatty acid trafficking pathway in which PUFAs are liberated from triglycerides to synthesize highly unsaturated PUFAs such as arachidonic and adrenic acid. These PUFAs then accumulate in phospholipids, including ether phospholipids, to promote ferroptosis sensitivity. Therefore, PUFA levels within cancer cells do not necessarily correlate with ferroptosis susceptibility. Rather, how cancer cells respond to extracellular lipid levels by trafficking PUFAs into proper phospholipid pools contributes to their sensitivity to ferroptosis.
铁中毒是由脂质过氧化引起的一种细胞死亡形式,正逐渐成为癌症治疗的靶点,这突出表明有必要确定影响铁中毒易感性的因素。脂质过氧化主要发生在含有多不饱和脂肪酸(PUFA)的磷脂上。在这里,我们发现即使细胞外脂质限制降低了细胞中的多不饱和脂肪酸水平,但缺脂的癌细胞却对铁中毒更为敏感。利用基于质谱的脂质组学和稳定同位素脂肪酸标记,我们发现脂质限制诱导脂肪酸贩运途径,其中 PUFA 从甘油三酯中释放出来,合成高度不饱和的 PUFA,如花生四烯酸和肾上腺酸。然后,这些 PUFAs 会在磷脂(包括醚磷脂)中积聚,从而促进铁变态反应的敏感性。因此,癌细胞内的 PUFA 含量并不一定与铁中毒敏感性相关。相反,癌细胞如何通过将 PUFA 转化为适当的磷脂池来对细胞外脂质水平做出反应,才会导致其对铁中毒的敏感性。
{"title":"Lipid availability influences ferroptosis sensitivity in cancer cells by regulating polyunsaturated fatty acid trafficking","authors":"Kelly H. Sokol, Cameron J. Lee, Thomas J. Rogers, Althea Waldhart, Abigail E. Ellis, Sahithi Madireddy, Samuel R. Daniels, Rachel (Rae) J. House, Xinyu Ye, Mary Olesnavich, Amy Johnson, Benjamin R. Furness, Ryan D. Sheldon, Evan C. Lien","doi":"10.1016/j.chembiol.2024.09.008","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.09.008","url":null,"abstract":"Ferroptosis is a form of cell death caused by lipid peroxidation that is emerging as a target for cancer therapy, highlighting the need to identify factors that govern ferroptosis susceptibility. Lipid peroxidation occurs primarily on phospholipids containing polyunsaturated fatty acids (PUFAs). Here, we show that even though extracellular lipid limitation reduces cellular PUFA levels, lipid-starved cancer cells are paradoxically more sensitive to ferroptosis. Using mass spectrometry-based lipidomics with stable isotope fatty acid labeling, we show that lipid limitation induces a fatty acid trafficking pathway in which PUFAs are liberated from triglycerides to synthesize highly unsaturated PUFAs such as arachidonic and adrenic acid. These PUFAs then accumulate in phospholipids, including ether phospholipids, to promote ferroptosis sensitivity. Therefore, PUFA levels within cancer cells do not necessarily correlate with ferroptosis susceptibility. Rather, how cancer cells respond to extracellular lipid levels by trafficking PUFAs into proper phospholipid pools contributes to their sensitivity to ferroptosis.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142487024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quinoline-based compounds can inhibit diverse enzymes that act on DNA 喹啉类化合物可抑制作用于 DNA 的各种酶
IF 8.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-21 DOI: 10.1016/j.chembiol.2024.09.007
Jujun Zhou, Qin Chen, Ren Ren, Jie Yang, Bigang Liu, John R. Horton, Caleb Chang, Chuxuan Li, Leora Maksoud, Yifei Yang, Dante Rotili, Abhinav K. Jain, Xing Zhang, Robert M. Blumenthal, Taiping Chen, Yang Gao, Sergio Valente, Antonello Mai, Xiaodong Cheng
DNA methylation, as exemplified by cytosine-C5 methylation in mammals and adenine-N6 methylation in bacteria, is a key epigenetic process. Developing non-nucleoside inhibitors to cause DNA hypomethylation is crucial for treating various conditions without the toxicities associated with existing cytidine-based hypomethylating agents. This study characterized fifteen quinoline-based analogs, particularly compounds with additions like a methylamine (9) or methylpiperazine (11), which demonstrate similar low micromolar inhibitory potency against human DNMT1 and Clostridioides difficile CamA. These compounds (9 and 11) intercalate into CamA-bound DNA via the minor groove, causing a conformational shift that moves the catalytic domain away from the DNA. This study adds to the limited examples of DNA methyltransferases being inhibited by non-nucleotide compounds through DNA intercalation. Additionally, some quinoline-based analogs inhibit other DNA-interacting enzymes, such as polymerases and base excision repair glycosylases. Finally, compound 11 elicits DNA damage response via p53 activation in cancer cells.
DNA 甲基化是一个关键的表观遗传过程,例如哺乳动物中的胞嘧啶-C5 甲基化和细菌中的腺嘌呤-N6 甲基化。开发非核苷类抑制剂来引起 DNA 低甲基化,对于治疗各种疾病而不产生现有的基于胞嘧啶的低甲基化药物的毒性至关重要。本研究鉴定了 15 种喹啉类类似物,特别是添加了甲胺(9)或甲基哌嗪(11)的化合物,它们对人类 DNMT1 和艰难梭菌 CamA 具有类似的低微摩尔抑制效力。这些化合物(9 和 11)通过小沟插层到与 CamA 结合的 DNA 中,引起构象转变,使催化结构域远离 DNA。这项研究增加了非核苷酸化合物通过 DNA 插层抑制 DNA 甲基转移酶的有限实例。此外,一些喹啉类似物还能抑制其他与 DNA 有相互作用的酶,如聚合酶和碱基切除修复糖基酶。最后,化合物 11 可通过激活癌细胞中的 p53 引起 DNA 损伤反应。
{"title":"Quinoline-based compounds can inhibit diverse enzymes that act on DNA","authors":"Jujun Zhou, Qin Chen, Ren Ren, Jie Yang, Bigang Liu, John R. Horton, Caleb Chang, Chuxuan Li, Leora Maksoud, Yifei Yang, Dante Rotili, Abhinav K. Jain, Xing Zhang, Robert M. Blumenthal, Taiping Chen, Yang Gao, Sergio Valente, Antonello Mai, Xiaodong Cheng","doi":"10.1016/j.chembiol.2024.09.007","DOIUrl":"https://doi.org/10.1016/j.chembiol.2024.09.007","url":null,"abstract":"DNA methylation, as exemplified by cytosine-C5 methylation in mammals and adenine-N6 methylation in bacteria, is a key epigenetic process. Developing non-nucleoside inhibitors to cause DNA hypomethylation is crucial for treating various conditions without the toxicities associated with existing cytidine-based hypomethylating agents. This study characterized fifteen quinoline-based analogs, particularly compounds with additions like a methylamine (<strong>9</strong>) or methylpiperazine (<strong>11</strong>), which demonstrate similar low micromolar inhibitory potency against human DNMT1 and <em>Clostridioides difficile</em> CamA. These compounds (<strong>9</strong> and <strong>11</strong>) intercalate into CamA-bound DNA via the minor groove, causing a conformational shift that moves the catalytic domain away from the DNA. This study adds to the limited examples of DNA methyltransferases being inhibited by non-nucleotide compounds through DNA intercalation. Additionally, some quinoline-based analogs inhibit other DNA-interacting enzymes, such as polymerases and base excision repair glycosylases. Finally, compound <strong>11</strong> elicits DNA damage response via p53 activation in cancer cells.","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":8.6,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A tau dephosphorylation-targeting chimeraselectively recruits protein phosphatase-1 to ameliorate Alzheimer’s disease and tauopathies 牛头去磷酸化靶向嵌合酶选择性招募蛋白磷酸酶-1,改善阿尔茨海默病和牛头病的病情
IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-10-17 DOI: 10.1016/j.chembiol.2024.09.003
Abnormal accumulation of hyperphosphorylated tau (pTau) is a major cause of neurodegeneration in Alzheimer’s disease (AD) and related tauopathies. Therefore, reducing pTau holds therapeutic promise for these diseases. Here, we developed a chimeric peptide, named D20, for selective facilitation of tau dephosphorylation by recruiting protein phosphatase 1 (PP1) to tau. PP1 is one of the active phosphatases that dephosphorylates tau. In both cultured primary hippocampal neurons and mouse models for AD or related tauopathies, we demonstrated that single-dose D20 treatment significantly reduced pTau by dephosphorylation at multiple AD-related sites and total tau (tTau) levels were also decreased. Multiple-dose administration of D20 through tail vein injection in 3xTg AD mice effectively ameliorated tau-associated pathologies with improved cognitive functions. Importantly, at therapeutic doses, D20 did not cause detectable toxicity in cultured neurons, neural cells, or peripheral organs in mice. These results suggest that D20 is a promising drug candidate for AD and related tauopathies.
高磷酸化 tau(pTau)的异常积累是阿尔茨海默病(AD)和相关 tau 病神经变性的主要原因。因此,降低 pTau 有望治疗这些疾病。在这里,我们开发了一种名为D20的嵌合肽,通过将蛋白磷酸酶1(PP1)招募到tau上,选择性地促进tau去磷酸化。PP1是使tau去磷酸化的活性磷酸酶之一。我们在培养的原代海马神经元和AD或相关tau病小鼠模型中证实,单剂量D20治疗可通过在多个AD相关位点去磷酸化而显著降低pTau,总tau(tTau)水平也会降低。在 3xTg AD 小鼠中通过尾静脉注射多剂量 D20 能有效改善与 tau 相关的病理现象,并改善认知功能。重要的是,在治疗剂量下,D20 不会对小鼠的培养神经元、神经细胞或外周器官产生可检测到的毒性。这些结果表明,D20是一种很有前景的候选药物,可用于治疗AD和相关的tau病症。
{"title":"A tau dephosphorylation-targeting chimeraselectively recruits protein phosphatase-1 to ameliorate Alzheimer’s disease and tauopathies","authors":"","doi":"10.1016/j.chembiol.2024.09.003","DOIUrl":"10.1016/j.chembiol.2024.09.003","url":null,"abstract":"<div><div>Abnormal accumulation of hyperphosphorylated tau (pTau) is a major cause of neurodegeneration in Alzheimer’s disease (AD) and related tauopathies. Therefore, reducing pTau holds therapeutic promise for these diseases. Here, we developed a chimeric peptide, named D20, for selective facilitation of tau dephosphorylation by recruiting protein phosphatase 1 (PP1) to tau. PP1 is one of the active phosphatases that dephosphorylates tau. In both cultured primary hippocampal neurons and mouse models for AD or related tauopathies, we demonstrated that single-dose D20 treatment significantly reduced pTau by dephosphorylation at multiple AD-related sites and total tau (tTau) levels were also decreased. Multiple-dose administration of D20 through tail vein injection in 3xTg AD mice effectively ameliorated tau-associated pathologies with improved cognitive functions. Importantly, at therapeutic doses, D20 did not cause detectable toxicity in cultured neurons, neural cells, or peripheral organs in mice. These results suggest that D20 is a promising drug candidate for AD and related tauopathies.</div></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142330242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Chemical Biology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1