Tingting Ning, Mengran Zhao, Nan Zhang, Zhaoqing Wang, Shutian Zhang, Mo Liu, Shengtao Zhu
{"title":"TRIM28 suppresses cancer stem-like characteristics in gastric cancer cells through Wnt/β-catenin signaling pathways.","authors":"Tingting Ning, Mengran Zhao, Nan Zhang, Zhaoqing Wang, Shutian Zhang, Mo Liu, Shengtao Zhu","doi":"10.1177/15353702231211970","DOIUrl":null,"url":null,"abstract":"<p><p>The influences of TRIM28 on the gastric tumorigenesis together with potential molecular mechanisms remain to be studied. We aimed at exploring the important effects of TRIM28 on gastric cancer (GC) and uncovering underling molecular mechanisms. Through immunohistochemistry analysis of 20 pairs of GC and the peritumoral tissues, the expression level of TRIM28 was determined. A variety of assays were applied to explore the important roles of TRIM28 in GC. Western blotting and qRT-PCR analyses were used to analyze the association between TRIM28 and the Wnt/β-catenin signaling pathway. TRIM28 was highly expressed in GC tissues than peritumoral tissues. And high expression level of TRIM28 in GC was associated with good prognostic effects. <i>In vitro</i> functional assays suggested TRIM28 knockdown enhanced the proliferation and clone formation of GC cell. Moreover, TRIM28 knockdown enhanced the expression level of stemness markers, strengthened sphere-forming and drug-resistance properties of GC cells, suggesting important effect on GC cell stemness. Besides, our analysis showed that the Wnt/β-catenin signaling was involved in the effect of TRIM28 on GC cell stemness property, and blocking Wnt/β-catenin signaling pathway obviously rescued the promotion influence of TRIM28 knockdown. Overall, TRIM28 has an important influence on regulating the stem-like property of GC cell via Wnt/β-catenin signaling, suggesting TRIM28 a promising drug target and a potential predictor of prognosis.</p>","PeriodicalId":12163,"journal":{"name":"Experimental Biology and Medicine","volume":" ","pages":"2210-2218"},"PeriodicalIF":2.8000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10903244/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15353702231211970","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The influences of TRIM28 on the gastric tumorigenesis together with potential molecular mechanisms remain to be studied. We aimed at exploring the important effects of TRIM28 on gastric cancer (GC) and uncovering underling molecular mechanisms. Through immunohistochemistry analysis of 20 pairs of GC and the peritumoral tissues, the expression level of TRIM28 was determined. A variety of assays were applied to explore the important roles of TRIM28 in GC. Western blotting and qRT-PCR analyses were used to analyze the association between TRIM28 and the Wnt/β-catenin signaling pathway. TRIM28 was highly expressed in GC tissues than peritumoral tissues. And high expression level of TRIM28 in GC was associated with good prognostic effects. In vitro functional assays suggested TRIM28 knockdown enhanced the proliferation and clone formation of GC cell. Moreover, TRIM28 knockdown enhanced the expression level of stemness markers, strengthened sphere-forming and drug-resistance properties of GC cells, suggesting important effect on GC cell stemness. Besides, our analysis showed that the Wnt/β-catenin signaling was involved in the effect of TRIM28 on GC cell stemness property, and blocking Wnt/β-catenin signaling pathway obviously rescued the promotion influence of TRIM28 knockdown. Overall, TRIM28 has an important influence on regulating the stem-like property of GC cell via Wnt/β-catenin signaling, suggesting TRIM28 a promising drug target and a potential predictor of prognosis.
期刊介绍:
Experimental Biology and Medicine (EBM) is a global, peer-reviewed journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. EBM provides both research and review articles as well as meeting symposia and brief communications. Articles in EBM represent cutting edge research at the overlapping junctions of the biological, physical and engineering sciences that impact upon the health and welfare of the world''s population.
Topics covered in EBM include: Anatomy/Pathology; Biochemistry and Molecular Biology; Bioimaging; Biomedical Engineering; Bionanoscience; Cell and Developmental Biology; Endocrinology and Nutrition; Environmental Health/Biomarkers/Precision Medicine; Genomics, Proteomics, and Bioinformatics; Immunology/Microbiology/Virology; Mechanisms of Aging; Neuroscience; Pharmacology and Toxicology; Physiology; Stem Cell Biology; Structural Biology; Systems Biology and Microphysiological Systems; and Translational Research.