Leonardo Lopes-Luz, Djairo Pastor Saavedra, Matheus Bernardes Torres Fogaça, Samira Bührer-Sékula, Mariane Martins de Araújo Stefani
{"title":"Challenges and advances in serological and molecular tests to aid leprosy diagnosis.","authors":"Leonardo Lopes-Luz, Djairo Pastor Saavedra, Matheus Bernardes Torres Fogaça, Samira Bührer-Sékula, Mariane Martins de Araújo Stefani","doi":"10.1177/15353702231209422","DOIUrl":null,"url":null,"abstract":"<p><p>Leprosy is a neglected chronic infectious disease caused by obligate intracellular bacilli, <i>Mycobacterium leprae</i> and <i>Mycobacterium lepromatosis</i>. Despite multidrug therapy (MDT) success, leprosy accounts for more than 200,000 new cases yearly. Leprosy diagnosis remains based on the dermato-neurologic examination, but histopathology of skin biopsy and bacilloscopy of intradermal scraping are subsidiary diagnostic tests that require expertise and laboratory infrastructure. This minireview summarizes the state of the art of serologic tests to aid leprosy diagnosis, highlighting enzyme-linked immunosorbent assay (ELISA) and point-of-care tests (POCT) biotechnologies. Also, the impact of the postgenomic era on the description of new recombinantly expressed <i>M. leprae</i>-specific protein antigens, such as leprosy Infectious Disease Research Institute (IDRI) diagnostic (LID)-1 is summarized. Highly specific and sensitive molecular techniques to detect <i>M. leprae</i> DNA as the quantitative polymerase chain reaction (qPCR) and the loop-mediated isothermal amplification (LAMP) are briefly reviewed. Serology studies using phenolic glycolipid-I (PGL-I) semi-synthetic antigens, LID-1 fusion antigen, and the single fusion complex natural disaccharide-octyl (NDO)-LID show high sensitivity in multibacillary (MB) patients. However, serology is not applicable to paucibacillary patients, as they have weak humoral response and robust cell-mediated response, requiring tests for cellular biomarkers. Unlike ELISA-based tests, leprosy-specific POCT based on semi-synthetic PGL-I antigens and NDO-LID 1 antigen is easy to perform, cheaper, equipment-free, and can contribute to early diagnosis avoiding permanent incapacities and helping to interrupt <i>M. leprae</i> transmission. Besides its use to help diagnosis of household contacts or at-risk populations in endemic areas, potential applications of leprosy serology include monitoring MDT efficacy, identification of recent infection, especially in young children, as surrogate markers of disease progression to orient adult chemoprophylaxis and as a predictor of type 2 leprosy reactions. Advances in molecular biology techniques have reduced the complexity and execution time of qPCR confirming its utility to help diagnosis while leprosy-specific LAMP holds promise as an adjunct test to detect <i>M. leprae</i> DNA.</p>","PeriodicalId":12163,"journal":{"name":"Experimental Biology and Medicine","volume":" ","pages":"2083-2094"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10800132/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15353702231209422","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Leprosy is a neglected chronic infectious disease caused by obligate intracellular bacilli, Mycobacterium leprae and Mycobacterium lepromatosis. Despite multidrug therapy (MDT) success, leprosy accounts for more than 200,000 new cases yearly. Leprosy diagnosis remains based on the dermato-neurologic examination, but histopathology of skin biopsy and bacilloscopy of intradermal scraping are subsidiary diagnostic tests that require expertise and laboratory infrastructure. This minireview summarizes the state of the art of serologic tests to aid leprosy diagnosis, highlighting enzyme-linked immunosorbent assay (ELISA) and point-of-care tests (POCT) biotechnologies. Also, the impact of the postgenomic era on the description of new recombinantly expressed M. leprae-specific protein antigens, such as leprosy Infectious Disease Research Institute (IDRI) diagnostic (LID)-1 is summarized. Highly specific and sensitive molecular techniques to detect M. leprae DNA as the quantitative polymerase chain reaction (qPCR) and the loop-mediated isothermal amplification (LAMP) are briefly reviewed. Serology studies using phenolic glycolipid-I (PGL-I) semi-synthetic antigens, LID-1 fusion antigen, and the single fusion complex natural disaccharide-octyl (NDO)-LID show high sensitivity in multibacillary (MB) patients. However, serology is not applicable to paucibacillary patients, as they have weak humoral response and robust cell-mediated response, requiring tests for cellular biomarkers. Unlike ELISA-based tests, leprosy-specific POCT based on semi-synthetic PGL-I antigens and NDO-LID 1 antigen is easy to perform, cheaper, equipment-free, and can contribute to early diagnosis avoiding permanent incapacities and helping to interrupt M. leprae transmission. Besides its use to help diagnosis of household contacts or at-risk populations in endemic areas, potential applications of leprosy serology include monitoring MDT efficacy, identification of recent infection, especially in young children, as surrogate markers of disease progression to orient adult chemoprophylaxis and as a predictor of type 2 leprosy reactions. Advances in molecular biology techniques have reduced the complexity and execution time of qPCR confirming its utility to help diagnosis while leprosy-specific LAMP holds promise as an adjunct test to detect M. leprae DNA.
期刊介绍:
Experimental Biology and Medicine (EBM) is a global, peer-reviewed journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. EBM provides both research and review articles as well as meeting symposia and brief communications. Articles in EBM represent cutting edge research at the overlapping junctions of the biological, physical and engineering sciences that impact upon the health and welfare of the world''s population.
Topics covered in EBM include: Anatomy/Pathology; Biochemistry and Molecular Biology; Bioimaging; Biomedical Engineering; Bionanoscience; Cell and Developmental Biology; Endocrinology and Nutrition; Environmental Health/Biomarkers/Precision Medicine; Genomics, Proteomics, and Bioinformatics; Immunology/Microbiology/Virology; Mechanisms of Aging; Neuroscience; Pharmacology and Toxicology; Physiology; Stem Cell Biology; Structural Biology; Systems Biology and Microphysiological Systems; and Translational Research.