{"title":"Progress in the contrary effects of glucagon-like peptide-1 and chemerin on obesity development.","authors":"Qilong Zhang, Jianping Ye, Xiaohui Wang","doi":"10.1177/15353702231214270","DOIUrl":null,"url":null,"abstract":"<p><p>Glucagon-like peptide-1 (GLP-1), secreted by intestinal L-cells, plays a pivotal role in the modulation of β-cell insulin secretion in a glucose-dependent manner, concurrently promoting β-cell survival and β-cell mass. Notably, GLP-1 has emerged as an effective second-line treatment for type 2 diabetes mellitus, gaining further prominence for its pronounced impact on body weight reduction, positioning it as a potent antiobesity agent. However, the mechanism by which GLP-1 improves obesity remains unclear. Some reports suggest that this mechanism may be associated with the regulation of adipokine synthesis within adipose tissue. Chemerin, a multifunctional adipokine and chemokine, has been identified as a pivotal player in adipocyte differentiation and the propagation of systemic inflammation, a hallmark of obesity. This review provides a comprehensive overview of the mechanisms by which GLP-1 and chemerin play crucial roles in obesity and obesity-related diseases. It discusses well-established aspects, such as their effects on food intake and glycolipid metabolism, as well as recent insights, including their influence on macrophage polarization and adipose tissue thermogenesis. GLP-1 has been shown to increase the population of anti-inflammatory M2 macrophages, promote brown adipose tissue thermogenesis, and induce the browning of white adipose tissue. In contrast, chemerin exhibits opposite effects in these processes. In addition, recent research findings have demonstrated the promising potential of GLP-1-based therapies in directly or indirectly regulating chemerin expression. In an intriguing reciprocal relationship, chemerin has also been newly identified as a negative regulator of GLP-1 <i>in vivo</i>. This review delineates the intricate interplay between GLP-1 and chemerin, unraveling their mutual inhibitory interactions. To the best of our knowledge, no previous reviews have focused on this specific topic, making this review particularly valuable in expanding our understanding of the endocrine mechanisms of obesity and providing potential strategies for the treatment of obesity and related diseases.</p>","PeriodicalId":12163,"journal":{"name":"Experimental Biology and Medicine","volume":" ","pages":"2020-2029"},"PeriodicalIF":2.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10800121/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/15353702231214270","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Glucagon-like peptide-1 (GLP-1), secreted by intestinal L-cells, plays a pivotal role in the modulation of β-cell insulin secretion in a glucose-dependent manner, concurrently promoting β-cell survival and β-cell mass. Notably, GLP-1 has emerged as an effective second-line treatment for type 2 diabetes mellitus, gaining further prominence for its pronounced impact on body weight reduction, positioning it as a potent antiobesity agent. However, the mechanism by which GLP-1 improves obesity remains unclear. Some reports suggest that this mechanism may be associated with the regulation of adipokine synthesis within adipose tissue. Chemerin, a multifunctional adipokine and chemokine, has been identified as a pivotal player in adipocyte differentiation and the propagation of systemic inflammation, a hallmark of obesity. This review provides a comprehensive overview of the mechanisms by which GLP-1 and chemerin play crucial roles in obesity and obesity-related diseases. It discusses well-established aspects, such as their effects on food intake and glycolipid metabolism, as well as recent insights, including their influence on macrophage polarization and adipose tissue thermogenesis. GLP-1 has been shown to increase the population of anti-inflammatory M2 macrophages, promote brown adipose tissue thermogenesis, and induce the browning of white adipose tissue. In contrast, chemerin exhibits opposite effects in these processes. In addition, recent research findings have demonstrated the promising potential of GLP-1-based therapies in directly or indirectly regulating chemerin expression. In an intriguing reciprocal relationship, chemerin has also been newly identified as a negative regulator of GLP-1 in vivo. This review delineates the intricate interplay between GLP-1 and chemerin, unraveling their mutual inhibitory interactions. To the best of our knowledge, no previous reviews have focused on this specific topic, making this review particularly valuable in expanding our understanding of the endocrine mechanisms of obesity and providing potential strategies for the treatment of obesity and related diseases.
期刊介绍:
Experimental Biology and Medicine (EBM) is a global, peer-reviewed journal dedicated to the publication of multidisciplinary and interdisciplinary research in the biomedical sciences. EBM provides both research and review articles as well as meeting symposia and brief communications. Articles in EBM represent cutting edge research at the overlapping junctions of the biological, physical and engineering sciences that impact upon the health and welfare of the world''s population.
Topics covered in EBM include: Anatomy/Pathology; Biochemistry and Molecular Biology; Bioimaging; Biomedical Engineering; Bionanoscience; Cell and Developmental Biology; Endocrinology and Nutrition; Environmental Health/Biomarkers/Precision Medicine; Genomics, Proteomics, and Bioinformatics; Immunology/Microbiology/Virology; Mechanisms of Aging; Neuroscience; Pharmacology and Toxicology; Physiology; Stem Cell Biology; Structural Biology; Systems Biology and Microphysiological Systems; and Translational Research.