Formally Verified Scalable Look Ahead Planning For Cloud Resource Management

IF 2.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE ACM Transactions on Autonomous and Adaptive Systems Pub Date : 2022-12-15 DOI:https://dl.acm.org/doi/10.1145/3555315
Farzin Zaker, Marin Litoiu, Mark Shtern
{"title":"Formally Verified Scalable Look Ahead Planning For Cloud Resource Management","authors":"Farzin Zaker, Marin Litoiu, Mark Shtern","doi":"https://dl.acm.org/doi/10.1145/3555315","DOIUrl":null,"url":null,"abstract":"<p>In this article, we propose and implement a distributed autonomic manager that maintains service level agreements (SLA) for each application scenario. The proposed autonomic manager supports SLAs by configuring the bandwidth ratios for each application scenario and uses an overlay network as an infrastructure. The most important aspect of the proposed autonomic manager is its scalability which allows us to deal with geographically distributed cloud-based applications and a large volume of computation. This can be useful in look ahead optimization and in adaptations using complex models, such as machine learning. We formally prove the safety and liveness properties of the implemented distributed algorithms. Through experiments on the Amazon AWS cloud, using two different use cases, we demonstrate the elasticity and flexibility of the autonomic manager as a measure of its applicability to different cloud applications with different types of workloads. Experiments also demonstrate that increasing the size of a look ahead window, up to a certain size, improves the accuracy of the adaptation decisions by up to 50%.</p>","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":"7 8","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3555315","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we propose and implement a distributed autonomic manager that maintains service level agreements (SLA) for each application scenario. The proposed autonomic manager supports SLAs by configuring the bandwidth ratios for each application scenario and uses an overlay network as an infrastructure. The most important aspect of the proposed autonomic manager is its scalability which allows us to deal with geographically distributed cloud-based applications and a large volume of computation. This can be useful in look ahead optimization and in adaptations using complex models, such as machine learning. We formally prove the safety and liveness properties of the implemented distributed algorithms. Through experiments on the Amazon AWS cloud, using two different use cases, we demonstrate the elasticity and flexibility of the autonomic manager as a measure of its applicability to different cloud applications with different types of workloads. Experiments also demonstrate that increasing the size of a look ahead window, up to a certain size, improves the accuracy of the adaptation decisions by up to 50%.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
正式验证可扩展的云资源管理前瞻性规划
在本文中,我们提出并实现了一个分布式自治管理器,它为每个应用程序场景维护服务水平协议(SLA)。建议的自治管理器通过为每个应用程序场景配置带宽比率来支持sla,并使用覆盖网络作为基础设施。自治管理器最重要的方面是它的可伸缩性,它允许我们处理地理上分布式的基于云的应用程序和大量的计算。这在前瞻性优化和使用复杂模型(如机器学习)进行调整时非常有用。正式证明了所实现的分布式算法的安全性和活动性。通过在Amazon AWS云上的实验,使用两个不同的用例,我们展示了自治管理器的弹性和灵活性,以此衡量其对具有不同类型工作负载的不同云应用程序的适用性。实验还表明,将前瞻窗口的大小增加到一定的大小,可将适应决策的准确性提高50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Autonomous and Adaptive Systems
ACM Transactions on Autonomous and Adaptive Systems 工程技术-计算机:理论方法
CiteScore
4.80
自引率
7.40%
发文量
9
审稿时长
>12 weeks
期刊介绍: TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.
期刊最新文献
IBAQ: Frequency-Domain Backdoor Attack Threatening Autonomous Driving via Quadratic Phase Adaptive Scheduling of High-Availability Drone Swarms for Congestion Alleviation in Connected Automated Vehicles Self-Supervised Machine Learning Framework for Online Container Security Attack Detection A Framework for Simultaneous Task Allocation and Planning under Uncertainty Adaptation in Edge Computing: A review on design principles and research challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1