Shengye Pang, Yi Li, Zhen Qin, Xinkui Zhao, Jintao Chen, Fan Wang, Jianwei Yin
{"title":"Adaptive Scheduling of High-Availability Drone Swarms for Congestion Alleviation in Connected Automated Vehicles","authors":"Shengye Pang, Yi Li, Zhen Qin, Xinkui Zhao, Jintao Chen, Fan Wang, Jianwei Yin","doi":"10.1145/3673905","DOIUrl":null,"url":null,"abstract":"<p>The Intelligent Transportation System (ITS) serves as a pivotal element within urban networks, offering decision support to users and connected automated vehicles (CAVs) through comprehensive information gathering, sensing, device control, and data processing. Presently, ITS predominantly relies on sensors embedded in fixed infrastructure, notably Roadside Units (RSUs). However, RSUs are confined by coverage limitations and may encounter challenges in prompt emergency responses. On-demand resources, such as drones, present a viable option to supplement these deficiencies effectively. This paper introduces an approach where Software-Defined Networking (SDN) and Mobile Edge Computing (MEC) technologies are integrated to formulate a high-availability drone swarm control and communication infrastructure framework, comprising the cloud layer, edge layer, and device layer. Drones confront limitations in flight duration attributed to battery limitations, posing a challenge in sustaining continuous monitoring of road conditions over extended periods. Effective drone scheduling stands as a promising solution to overcome these constraints. To tackle this issue, we initially utilized Graph WaveNet, a specialized graph neural network structure tailored for spatial-temporal graph modeling, for training a congestion prediction model using real-world dataset inputs. Building upon this, we further propose an algorithm for drone scheduling based on congestion prediction. Our simulation experiments using real-world data demonstrate that, compared to the baseline method, the proposed scheduling algorithm not only yielded superior scheduling gains but also mitigated drone idle rates.</p>","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":"28 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3673905","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The Intelligent Transportation System (ITS) serves as a pivotal element within urban networks, offering decision support to users and connected automated vehicles (CAVs) through comprehensive information gathering, sensing, device control, and data processing. Presently, ITS predominantly relies on sensors embedded in fixed infrastructure, notably Roadside Units (RSUs). However, RSUs are confined by coverage limitations and may encounter challenges in prompt emergency responses. On-demand resources, such as drones, present a viable option to supplement these deficiencies effectively. This paper introduces an approach where Software-Defined Networking (SDN) and Mobile Edge Computing (MEC) technologies are integrated to formulate a high-availability drone swarm control and communication infrastructure framework, comprising the cloud layer, edge layer, and device layer. Drones confront limitations in flight duration attributed to battery limitations, posing a challenge in sustaining continuous monitoring of road conditions over extended periods. Effective drone scheduling stands as a promising solution to overcome these constraints. To tackle this issue, we initially utilized Graph WaveNet, a specialized graph neural network structure tailored for spatial-temporal graph modeling, for training a congestion prediction model using real-world dataset inputs. Building upon this, we further propose an algorithm for drone scheduling based on congestion prediction. Our simulation experiments using real-world data demonstrate that, compared to the baseline method, the proposed scheduling algorithm not only yielded superior scheduling gains but also mitigated drone idle rates.
期刊介绍:
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors.
TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.