Exploiting TFET-based technology for energy-efficient STT-MRAM cells

IF 1.1 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Applied Electromagnetics and Mechanics Pub Date : 2023-06-30 DOI:10.3233/jae-220300
Santiago S. Pérez, Alessandro Bedoya, Luis Miguel Prócel, Ramiro Taco
{"title":"Exploiting TFET-based technology for energy-efficient STT-MRAM cells","authors":"Santiago S. Pérez, Alessandro Bedoya, Luis Miguel Prócel, Ramiro Taco","doi":"10.3233/jae-220300","DOIUrl":null,"url":null,"abstract":"Spin-transfer torque magnetic random-access memory (STT-MRAM) has been demonstrated to be a leading candidate for on-chip memory technology. In this work, double-barrier magnetic tunnel junction (DMTJ) is exploited to define STT-MRAMs at the circuit-level (i.e. at the bitcell level). The DMTJ-basedbitcells are built from tunnel-FET technology and benchmarked against a calibrated 10 nm-FinFET technology model. STT-MRAM bitcells operate in the ultra-low voltage domain, and are evaluated in terms of energy-efficiency and area. Simulation results points out that the tunnel-FET based solution is the most energy-efficient alternative, in terms of energy-delay-product (EDP), when evaluated at the 6𝜎 corner. Quantitatively, when compared against the FinFET-based design, the TFET-based bitcell exhibits 58% lower EDP, 40% better delay and 34% reduced writing energy. Finally, a leakage analysis was also carried out, showing that TFET-based STT-MRAM bitcells have lower leakage current as compared to the FinFET-based counterpart.","PeriodicalId":50340,"journal":{"name":"International Journal of Applied Electromagnetics and Mechanics","volume":"71 6","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Electromagnetics and Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3233/jae-220300","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Spin-transfer torque magnetic random-access memory (STT-MRAM) has been demonstrated to be a leading candidate for on-chip memory technology. In this work, double-barrier magnetic tunnel junction (DMTJ) is exploited to define STT-MRAMs at the circuit-level (i.e. at the bitcell level). The DMTJ-basedbitcells are built from tunnel-FET technology and benchmarked against a calibrated 10 nm-FinFET technology model. STT-MRAM bitcells operate in the ultra-low voltage domain, and are evaluated in terms of energy-efficiency and area. Simulation results points out that the tunnel-FET based solution is the most energy-efficient alternative, in terms of energy-delay-product (EDP), when evaluated at the 6𝜎 corner. Quantitatively, when compared against the FinFET-based design, the TFET-based bitcell exhibits 58% lower EDP, 40% better delay and 34% reduced writing energy. Finally, a leakage analysis was also carried out, showing that TFET-based STT-MRAM bitcells have lower leakage current as compared to the FinFET-based counterpart.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于tfet的节能STT-MRAM电池技术
自旋转移转矩磁随机存取存储器(STT-MRAM)已被证明是片上存储技术的主要候选。在这项工作中,利用双势垒磁隧道结(DMTJ)来定义电路级(即位元级)的stt - mram。基于dmtj的位单元采用隧道fet技术构建,并针对校准的10纳米finfet技术模型进行基准测试。STT-MRAM位单元在超低电压域中工作,并根据能效和面积进行评估。仿真结果表明,从能量延迟积(EDP)的角度来看,隧道场效应管是最节能的方案。定量地说,与基于finfet的设计相比,基于tfet的位单元的EDP降低58%,延迟提高40%,写入能量降低34%。最后,还进行了泄漏分析,表明基于tfet的STT-MRAM位单元与基于finfet的位单元相比具有更低的泄漏电流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
100
审稿时长
4.6 months
期刊介绍: The aim of the International Journal of Applied Electromagnetics and Mechanics is to contribute to intersciences coupling applied electromagnetics, mechanics and materials. The journal also intends to stimulate the further development of current technology in industry. The main subjects covered by the journal are: Physics and mechanics of electromagnetic materials and devices Computational electromagnetics in materials and devices Applications of electromagnetic fields and materials The three interrelated key subjects – electromagnetics, mechanics and materials - include the following aspects: electromagnetic NDE, electromagnetic machines and devices, electromagnetic materials and structures, electromagnetic fluids, magnetoelastic effects and magnetosolid mechanics, magnetic levitations, electromagnetic propulsion, bioelectromagnetics, and inverse problems in electromagnetics. The editorial policy is to combine information and experience from both the latest high technology fields and as well as the well-established technologies within applied electromagnetics.
期刊最新文献
Large-stroke and high-precision coaxial integrated macro-micro composite actuator based on VCM and GMA Two complementary examples of electrification in the cement industry Design and test of capacitive power transfer coupling for wound field synchronous machines Analysis of current linkage harmonics in multi-phase machines with distributed windings Resonant coil matrix shielding for dynamic WPT systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1