Giacomo Valli , Paul Ritsche , Andrea Casolo , Francesco Negro , Giuseppe De Vito
{"title":"Tutorial: Analysis of central and peripheral motor unit properties from decomposed High-Density surface EMG signals with openhdemg","authors":"Giacomo Valli , Paul Ritsche , Andrea Casolo , Francesco Negro , Giuseppe De Vito","doi":"10.1016/j.jelekin.2023.102850","DOIUrl":null,"url":null,"abstract":"<div><p>High-Density surface Electromyography (HD-sEMG) is the most established technique for the non-invasive analysis of single motor unit (MU) activity in humans. It provides the possibility to study the central properties (e.g., discharge rate) of large populations of MUs by analysis of their firing pattern. Additionally, by spike-triggered averaging, peripheral properties such as MUs conduction velocity can be estimated over adjacent regions of the muscles and single MUs can be tracked across different recording sessions. In this tutorial, we guide the reader through the investigation of MUs properties from decomposed HD-sEMG recordings by providing both the theoretical knowledge and practical tools necessary to perform the analyses. The practical application of this tutorial is based on <em>openhdemg</em>, a free and open-source community-based framework for the automated analysis of MUs properties built on Python 3 and composed of different modules for HD-sEMG data handling, visualisation, editing, and analysis. <em>openhdemg</em> is interfaceable with most of the available recording software, equipment or decomposition techniques, and all the built-in functions are easily adaptable to different experimental needs. The framework also includes a graphical user interface which enables users with limited coding skills to perform a robust and reliable analysis of MUs properties without coding.</p></div>","PeriodicalId":56123,"journal":{"name":"Journal of Electromyography and Kinesiology","volume":"74 ","pages":"Article 102850"},"PeriodicalIF":2.0000,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1050641123001098/pdfft?md5=d6ba05604165bdb8fd88e04527b14cf1&pid=1-s2.0-S1050641123001098-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electromyography and Kinesiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1050641123001098","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
High-Density surface Electromyography (HD-sEMG) is the most established technique for the non-invasive analysis of single motor unit (MU) activity in humans. It provides the possibility to study the central properties (e.g., discharge rate) of large populations of MUs by analysis of their firing pattern. Additionally, by spike-triggered averaging, peripheral properties such as MUs conduction velocity can be estimated over adjacent regions of the muscles and single MUs can be tracked across different recording sessions. In this tutorial, we guide the reader through the investigation of MUs properties from decomposed HD-sEMG recordings by providing both the theoretical knowledge and practical tools necessary to perform the analyses. The practical application of this tutorial is based on openhdemg, a free and open-source community-based framework for the automated analysis of MUs properties built on Python 3 and composed of different modules for HD-sEMG data handling, visualisation, editing, and analysis. openhdemg is interfaceable with most of the available recording software, equipment or decomposition techniques, and all the built-in functions are easily adaptable to different experimental needs. The framework also includes a graphical user interface which enables users with limited coding skills to perform a robust and reliable analysis of MUs properties without coding.
期刊介绍:
Journal of Electromyography & Kinesiology is the primary source for outstanding original articles on the study of human movement from muscle contraction via its motor units and sensory system to integrated motion through mechanical and electrical detection techniques.
As the official publication of the International Society of Electrophysiology and Kinesiology, the journal is dedicated to publishing the best work in all areas of electromyography and kinesiology, including: control of movement, muscle fatigue, muscle and nerve properties, joint biomechanics and electrical stimulation. Applications in rehabilitation, sports & exercise, motion analysis, ergonomics, alternative & complimentary medicine, measures of human performance and technical articles on electromyographic signal processing are welcome.