Mallows model averaging based on kernel regression imputation with responses missing at random

Pub Date : 2023-11-22 DOI:10.1016/j.jspi.2023.106130
Hengkun Zhu, Guohua Zou
{"title":"Mallows model averaging based on kernel regression imputation with responses missing at random","authors":"Hengkun Zhu,&nbsp;Guohua Zou","doi":"10.1016/j.jspi.2023.106130","DOIUrl":null,"url":null,"abstract":"<div><p>Missing data is a common problem in real data analysis. In this paper, a Mallows model averaging method based on kernel regression imputation is proposed for the linear regression models with responses missing at random. We prove that our method asymptotically achieves the lowest possible squared error. Compared with the existing model averaging methods, the new method does not require the use of a parameter model to characterize the missing generation mechanism. The Monte Carlo simulation and a practical application demonstrate the usefulness of the proposed method.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037837582300099X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Missing data is a common problem in real data analysis. In this paper, a Mallows model averaging method based on kernel regression imputation is proposed for the linear regression models with responses missing at random. We prove that our method asymptotically achieves the lowest possible squared error. Compared with the existing model averaging methods, the new method does not require the use of a parameter model to characterize the missing generation mechanism. The Monte Carlo simulation and a practical application demonstrate the usefulness of the proposed method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
基于随机缺失响应核回归插值的Mallows模型平均
缺失数据是实际数据分析中常见的问题。针对随机缺失响应的线性回归模型,提出了一种基于核回归插值的Mallows模型平均方法。我们证明了我们的方法渐近地达到最小可能的平方误差。与现有的模型平均方法相比,该方法不需要使用参数模型来表征缺失产生机理。蒙特卡罗仿真和实际应用表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1