Developing a surface acoustic wave-induced microfluidic cell lysis device for point-of-care DNA amplification

IF 3.9 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Engineering in Life Sciences Pub Date : 2023-12-06 DOI:10.1002/elsc.202300230
Abbas Ali Husseini, Ali Mohammad Yazdani, Fatemeh Ghadiri, Alper Şişman
{"title":"Developing a surface acoustic wave-induced microfluidic cell lysis device for point-of-care DNA amplification","authors":"Abbas Ali Husseini,&nbsp;Ali Mohammad Yazdani,&nbsp;Fatemeh Ghadiri,&nbsp;Alper Şişman","doi":"10.1002/elsc.202300230","DOIUrl":null,"url":null,"abstract":"<p>We developed a microchip device using surface acoustic waves (SAW) and sharp-edge glass microparticles to rapidly lyse low-level cell samples. This microchip features a 13-finger pair interdigital transducer (IDT) with a 30-degree focused angle, creating high-intensity acoustic beams converging 6 mm away at a 16 MHz frequency. Cell lysis is achieved through centrifugal forces acting on <i>Candida albicans</i> cells and glass particles within the focal area. To optimize this SAW-induced streaming, we conducted 42 pilot experiments, varying electrical power, droplet volume, glass particle size, concentration, and lysis time, resulting in optimal conditions: an electrical signal of 2.5 W, a 20 μL sample volume, glass particle size below 10 μm, concentration of 0.2 μg, and a 5-min lysis period. We successfully amplified DNA target fragments directly from the lysate, demonstrating an efficient microchip-based cell lysis method. When combined with an isothermal amplification technique, this technology holds promise for rapid point-of-care (POC) applications.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"24 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.202300230","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering in Life Sciences","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsc.202300230","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

We developed a microchip device using surface acoustic waves (SAW) and sharp-edge glass microparticles to rapidly lyse low-level cell samples. This microchip features a 13-finger pair interdigital transducer (IDT) with a 30-degree focused angle, creating high-intensity acoustic beams converging 6 mm away at a 16 MHz frequency. Cell lysis is achieved through centrifugal forces acting on Candida albicans cells and glass particles within the focal area. To optimize this SAW-induced streaming, we conducted 42 pilot experiments, varying electrical power, droplet volume, glass particle size, concentration, and lysis time, resulting in optimal conditions: an electrical signal of 2.5 W, a 20 μL sample volume, glass particle size below 10 μm, concentration of 0.2 μg, and a 5-min lysis period. We successfully amplified DNA target fragments directly from the lysate, demonstrating an efficient microchip-based cell lysis method. When combined with an isothermal amplification technique, this technology holds promise for rapid point-of-care (POC) applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研制一种用于即时DNA扩增的表面声波诱导微流体细胞裂解装置
我们开发了一种微芯片装置,使用表面声波(SAW)和锐边玻璃微粒来快速分解低水平的细胞样品。该微芯片具有13指对数字转换器(IDT),具有30度聚焦角,可在16mhz频率下产生高强度声波束,会聚6mm远。细胞裂解是通过离心力作用于白色念珠菌细胞和焦点区域内的玻璃颗粒来实现的。为了优化这种saw诱导的流,我们进行了42次中试实验,改变了电功率、液滴体积、玻璃粒径、浓度和裂解时间,得到了最佳条件:电信号2.5 W,样品体积20 μL,玻璃粒径小于10 μm,浓度0.2 μg,裂解时间5 min。我们成功地从裂解物中直接扩增了DNA目标片段,证明了一种有效的基于微芯片的细胞裂解方法。当与等温扩增技术相结合时,该技术有望实现快速点护理(POC)应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Engineering in Life Sciences
Engineering in Life Sciences 工程技术-生物工程与应用微生物
CiteScore
6.40
自引率
3.70%
发文量
81
审稿时长
3 months
期刊介绍: Engineering in Life Sciences (ELS) focuses on engineering principles and innovations in life sciences and biotechnology. Life sciences and biotechnology covered in ELS encompass the use of biomolecules (e.g. proteins/enzymes), cells (microbial, plant and mammalian origins) and biomaterials for biosynthesis, biotransformation, cell-based treatment and bio-based solutions in industrial and pharmaceutical biotechnologies as well as in biomedicine. ELS especially aims to promote interdisciplinary collaborations among biologists, biotechnologists and engineers for quantitative understanding and holistic engineering (design-built-test) of biological parts and processes in the different application areas.
期刊最新文献
Optimizations of Placenta Extracellular Matrix-Loaded Silk Fibroin/Alginate 3D-Printed Scaffolds Structurally and Functionally for Bone Tissue Engineering. A Consecutive Genome Engineering Method Reveals a New Phenotype and Regulation of Glucose and Glycerol Utilization in Clostridium Pasteurianum. Investigating Ultrafiltration Membranes and Operation Modes for Improved Lentiviral Vector Processing. Issue Information Cover Picture: Engineering in Life Sciences 12'24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1