Simulation-Based Optimization of User Interfaces for Quality-Assuring Machine Learning Model Predictions

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2023-05-17 DOI:https://dl.acm.org/doi/10.1145/3594552
Yu Zhang, Martijn Tennekes, Tim de Jong, Lyana Curier, Bob Coecke, Min Chen
{"title":"Simulation-Based Optimization of User Interfaces for Quality-Assuring Machine Learning Model Predictions","authors":"Yu Zhang, Martijn Tennekes, Tim de Jong, Lyana Curier, Bob Coecke, Min Chen","doi":"https://dl.acm.org/doi/10.1145/3594552","DOIUrl":null,"url":null,"abstract":"<p>Quality-sensitive applications of machine learning (ML) require quality assurance (QA) by humans before the predictions of an ML model can be deployed. QA for ML (QA4ML) interfaces require users to view a large amount of data and perform many interactions to correct errors made by the ML model. An optimized user interface (UI) can significantly reduce interaction costs. While UI optimization can be informed by user studies evaluating design options, this approach is not scalable because there are typically numerous small variations that can affect the efficiency of a QA4ML interface. Hence, we propose using simulation to evaluate and aid the optimization of QA4ML interfaces. In particular, we focus on simulating the combined effects of human intelligence in initiating appropriate interaction commands and machine intelligence in providing algorithmic assistance for accelerating QA4ML processes. As QA4ML is usually labor-intensive, we use the simulated task completion time as the metric for UI optimization under different interface and algorithm setups. We demonstrate the usage of this UI design method in several QA4ML applications.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://doi.org/https://dl.acm.org/doi/10.1145/3594552","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Quality-sensitive applications of machine learning (ML) require quality assurance (QA) by humans before the predictions of an ML model can be deployed. QA for ML (QA4ML) interfaces require users to view a large amount of data and perform many interactions to correct errors made by the ML model. An optimized user interface (UI) can significantly reduce interaction costs. While UI optimization can be informed by user studies evaluating design options, this approach is not scalable because there are typically numerous small variations that can affect the efficiency of a QA4ML interface. Hence, we propose using simulation to evaluate and aid the optimization of QA4ML interfaces. In particular, we focus on simulating the combined effects of human intelligence in initiating appropriate interaction commands and machine intelligence in providing algorithmic assistance for accelerating QA4ML processes. As QA4ML is usually labor-intensive, we use the simulated task completion time as the metric for UI optimization under different interface and algorithm setups. We demonstrate the usage of this UI design method in several QA4ML applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于仿真的用户界面优化,用于保证质量的机器学习模型预测
机器学习(ML)的质量敏感应用需要在部署ML模型的预测之前由人类进行质量保证(QA)。QA for ML (QA4ML)接口要求用户查看大量数据并执行许多交互以纠正ML模型所犯的错误。优化的用户界面(UI)可以显著降低交互成本。虽然UI优化可以通过用户研究来评估设计选项,但这种方法是不可伸缩的,因为通常有许多小的变化会影响QA4ML界面的效率。因此,我们建议使用仿真来评估和帮助QA4ML接口的优化。特别是,我们专注于模拟人类智能在启动适当的交互命令和机器智能在为加速QA4ML过程提供算法辅助方面的综合效果。由于QA4ML通常是劳动密集型的,因此我们使用模拟任务完成时间作为不同接口和算法设置下UI优化的度量。我们将演示在几个QA4ML应用程序中使用这种UI设计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1