Viviane Zulian, Andrea R. Norris, Kristina L. Cockle, Alison N. Porter, Lauryn G. Do, Krista L. De Groot
{"title":"Seasonal variation in drivers of bird-window collisions on the west coast of British Columbia, Canada","authors":"Viviane Zulian, Andrea R. Norris, Kristina L. Cockle, Alison N. Porter, Lauryn G. Do, Krista L. De Groot","doi":"10.5751/ace-02482-180215","DOIUrl":null,"url":null,"abstract":"<p>We examined the effects of façade-level building and vegetation features on bird-window collision risk, and how these effects varied across seasons at a Pacific coastal campus with mild winters, abundant evergreen vegetation, and seasonally varied bird communities. We searched for bird carcasses at 57 façades of 8 buildings at the University of British Columbia (UBC) over 155 days between January 2015 and March 2017 (total: 8835 façade surveys). Collision monitoring occurred across five equal sampling periods that represented stages of the annual cycle of the bird community, including the fall and spring migratory periods, the breeding season, and the long overwintering period. For each season, we compared logistic regression models predicting the odds of a collision from different sets of façade and vegetation characteristics expected to influence collisions: façade area, area of glass, porous surface cover (ground and shrub vegetation, soil, leaf litter), tree cover, and the number of building stories reflecting vegetation. Consistent with other studies, area of glass had a positive influence on collision probability in all seasons; however, the effect was strongest during the fall migratory period, when daily collision mortality rates peaked at UBC. The number of stories reflecting vegetation also increased collision probability, but only in the fall, indicating that the vertical extent of vegetation and reflective glass may affect collision risk differently as bird communities change across seasons. Façade area increased collision probability only in the winter (a long and lethal period for bird collisions at UBC), reflecting different risk factors associated with the species most vulnerable to collisions in this season. Our results highlight the need to measure building and vegetation effects across the longest and most lethal stages of the annual cycle of birds, both to predict the impact of proposed buildings and to prioritize mitigation strategies that will result in the greatest conservation benefits.</p>\n<p>The post Seasonal variation in drivers of bird-window collisions on the west coast of British Columbia, Canada first appeared on Avian Conservation and Ecology.</p>","PeriodicalId":49233,"journal":{"name":"Avian Conservation and Ecology","volume":"75 7","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Avian Conservation and Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.5751/ace-02482-180215","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
We examined the effects of façade-level building and vegetation features on bird-window collision risk, and how these effects varied across seasons at a Pacific coastal campus with mild winters, abundant evergreen vegetation, and seasonally varied bird communities. We searched for bird carcasses at 57 façades of 8 buildings at the University of British Columbia (UBC) over 155 days between January 2015 and March 2017 (total: 8835 façade surveys). Collision monitoring occurred across five equal sampling periods that represented stages of the annual cycle of the bird community, including the fall and spring migratory periods, the breeding season, and the long overwintering period. For each season, we compared logistic regression models predicting the odds of a collision from different sets of façade and vegetation characteristics expected to influence collisions: façade area, area of glass, porous surface cover (ground and shrub vegetation, soil, leaf litter), tree cover, and the number of building stories reflecting vegetation. Consistent with other studies, area of glass had a positive influence on collision probability in all seasons; however, the effect was strongest during the fall migratory period, when daily collision mortality rates peaked at UBC. The number of stories reflecting vegetation also increased collision probability, but only in the fall, indicating that the vertical extent of vegetation and reflective glass may affect collision risk differently as bird communities change across seasons. Façade area increased collision probability only in the winter (a long and lethal period for bird collisions at UBC), reflecting different risk factors associated with the species most vulnerable to collisions in this season. Our results highlight the need to measure building and vegetation effects across the longest and most lethal stages of the annual cycle of birds, both to predict the impact of proposed buildings and to prioritize mitigation strategies that will result in the greatest conservation benefits.
The post Seasonal variation in drivers of bird-window collisions on the west coast of British Columbia, Canada first appeared on Avian Conservation and Ecology.
期刊介绍:
Avian Conservation and Ecology is an open-access, fully electronic scientific journal, sponsored by the Society of Canadian Ornithologists and Birds Canada. We publish papers that are scientifically rigorous and relevant to the bird conservation community in a cost-effective electronic approach that makes them freely available to scientists and the public in real-time. ACE is a fully indexed ISSN journal that welcomes contributions from scientists all over the world.
While the name of the journal implies a publication niche of conservation AND ecology, we think the theme of conservation THROUGH ecology provides a better sense of our purpose. As such, we are particularly interested in contributions that use a scientifically sound and rigorous approach to the achievement of avian conservation as revealed through insights into ecological principles and processes. Papers are expected to fall along a continuum of pure conservation and management at one end to more pure ecology at the other but our emphasis will be on those contributions with direct relevance to conservation objectives.