Fang Zhang,Yue Wu,Zhitao Xiao,Lei Geng,Jun Wu,Jia Wen,Wen Wang,Ping Liu
{"title":"Super resolution reconstruction for medical image based on adaptive multi-dictionary learning and structural self-similarity.","authors":"Fang Zhang,Yue Wu,Zhitao Xiao,Lei Geng,Jun Wu,Jia Wen,Wen Wang,Ping Liu","doi":"10.1080/24699322.2018.1557906","DOIUrl":null,"url":null,"abstract":"To improve the quality of the super-resolution (SR) reconstructed medical images, an improved adaptive multi-dictionary learning method is proposed, which uses the combined information of medical image itself and the natural images database. In training dictionary section, it uses the upper layer images of pyramid which are generated by the self-similarity of low resolution images. In reconstruction section, the top layer image of pyramid is taken as the initial reconstruction image, and medical image's SR reconstruction is achieved by regularization term which is the non-local structure self-similarity of the image. This method can make full use of the same scale and different scale similar information of medical images. Simulation experiments are carried out on natural images and medical images, and the experimental results show the proposed method is effective for improving the effect of medical image SR reconstruction.","PeriodicalId":56051,"journal":{"name":"Computer Assisted Surgery","volume":"21 2","pages":"1-8"},"PeriodicalIF":1.5000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Assisted Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/24699322.2018.1557906","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
To improve the quality of the super-resolution (SR) reconstructed medical images, an improved adaptive multi-dictionary learning method is proposed, which uses the combined information of medical image itself and the natural images database. In training dictionary section, it uses the upper layer images of pyramid which are generated by the self-similarity of low resolution images. In reconstruction section, the top layer image of pyramid is taken as the initial reconstruction image, and medical image's SR reconstruction is achieved by regularization term which is the non-local structure self-similarity of the image. This method can make full use of the same scale and different scale similar information of medical images. Simulation experiments are carried out on natural images and medical images, and the experimental results show the proposed method is effective for improving the effect of medical image SR reconstruction.
期刊介绍:
omputer Assisted Surgery aims to improve patient care by advancing the utilization of computers during treatment; to evaluate the benefits and risks associated with the integration of advanced digital technologies into surgical practice; to disseminate clinical and basic research relevant to stereotactic surgery, minimal access surgery, endoscopy, and surgical robotics; to encourage interdisciplinary collaboration between engineers and physicians in developing new concepts and applications; to educate clinicians about the principles and techniques of computer assisted surgery and therapeutics; and to serve the international scientific community as a medium for the transfer of new information relating to theory, research, and practice in biomedical imaging and the surgical specialties.
The scope of Computer Assisted Surgery encompasses all fields within surgery, as well as biomedical imaging and instrumentation, and digital technology employed as an adjunct to imaging in diagnosis, therapeutics, and surgery. Topics featured include frameless as well as conventional stereotactic procedures, surgery guided by intraoperative ultrasound or magnetic resonance imaging, image guided focused irradiation, robotic surgery, and any therapeutic interventions performed with the use of digital imaging technology.