Radiotherapy commonly utilizes cone beam computed tomography (CBCT) for patient positioning and treatment monitoring. CBCT is deemed to be secure for patients, making it suitable for the delivery of fractional doses. However, limitations such as a narrow field of view, beam hardening, scattered radiation artifacts, and variability in pixel intensity hinder the direct use of raw CBCT for dose recalculation during treatment. To address this issue, reliable correction techniques are necessary to remove artifacts and remap pixel intensity into Hounsfield Units (HU) values. This study proposes a deep-learning framework for calibrating CBCT images acquired with narrow field of view (FOV) systems and demonstrates its potential use in proton treatment planning updates. Cycle-consistent generative adversarial networks (cGAN) processes raw CBCT to reduce scatter and remap HU. Monte Carlo simulation is used to generate CBCT scans, enabling the possibility to focus solely on the algorithm's ability to reduce artifacts and cupping effects without considering intra-patient longitudinal variability and producing a fair comparison between planning CT (pCT) and calibrated CBCT dosimetry. To showcase the viability of the approach using real-world data, experiments were also conducted using real CBCT. Tests were performed on a publicly available dataset of 40 patients who received ablative radiation therapy for pancreatic cancer. The simulated CBCT calibration led to a difference in proton dosimetry of less than 2%, compared to the planning CT. The potential toxicity effect on the organs at risk decreased from about 50% (uncalibrated) up the 2% (calibrated). The gamma pass rate at 3%/2 mm produced an improvement of about 37% in replicating the prescribed dose before and after calibration (53.78% vs 90.26%). Real data also confirmed this with slightly inferior performances for the same criteria (65.36% vs 87.20%). These results may confirm that generative artificial intelligence brings the use of narrow FOV CBCT scans incrementally closer to clinical translation in proton therapy planning updates.
Advancements in mixed reality (MR) have led to innovative approaches in image-guided surgery (IGS). In this paper, we provide a comprehensive analysis of the current state of MR in image-guided procedures across various surgical domains. Using the Data Visualization View (DVV) Taxonomy, we analyze the progress made since a 2013 literature review paper on MR IGS systems. In addition to examining the current surgical domains using MR systems, we explore trends in types of MR hardware used, type of data visualized, visualizations of virtual elements, and interaction methods in use. Our analysis also covers the metrics used to evaluate these systems in the operating room (OR), both qualitative and quantitative assessments, and clinical studies that have demonstrated the potential of MR technologies to enhance surgical workflows and outcomes. We also address current challenges and future directions that would further establish the use of MR in IGS.
The real-time requirement for image segmentation in laparoscopic surgical assistance systems is extremely high. Although traditional deep learning models can ensure high segmentation accuracy, they suffer from a large computational burden. In the practical setting of most hospitals, where powerful computing resources are lacking, these models cannot meet the real-time computational demands. We propose a novel network SwinD-Net based on Skip connections, incorporating Depthwise separable convolutions and Swin Transformer Blocks. To reduce computational overhead, we eliminate the skip connection in the first layer and reduce the number of channels in shallow feature maps. Additionally, we introduce Swin Transformer Blocks, which have a larger computational and parameter footprint, to extract global information and capture high-level semantic features. Through these modifications, our network achieves desirable performance while maintaining a lightweight design. We conduct experiments on the CholecSeg8k dataset to validate the effectiveness of our approach. Compared to other models, our approach achieves high accuracy while significantly reducing computational and parameter overhead. Specifically, our model requires only 98.82 M floating-point operations (FLOPs) and 0.52 M parameters, with an inference time of 47.49 ms per image on a CPU. Compared to the recently proposed lightweight segmentation network UNeXt, our model not only outperforms it in terms of the Dice metric but also has only 1/3 of the parameters and 1/22 of the FLOPs. In addition, our model achieves a 2.4 times faster inference speed than UNeXt, demonstrating comprehensive improvements in both accuracy and speed. Our model effectively reduces parameter count and computational complexity, improving the inference speed while maintaining comparable accuracy. The source code will be available at https://github.com/ouyangshuiming/SwinDNet.
Computer-assisted orthopedic surgery requires precise representations of bone surfaces. To date, computed tomography constitutes the gold standard, but comes with a number of limitations, including costs, radiation and availability. Ultrasound has potential to become an alternative to computed tomography, yet suffers from low image quality and limited field-of-view. These shortcomings may be addressed by a fully automatic segmentation and model-based completion of 3D bone surfaces from ultrasound images. This survey summarizes the state-of-the-art in this field by introducing employed algorithms, and determining challenges and trends. For segmentation, a clear trend toward machine learning-based algorithms can be observed. For 3D bone model completion however, none of the published methods involve machine learning. Furthermore, data sets and metrics are identified as weak spots in current research, preventing development and evaluation of models that generalize well.
Objectives: We aimed to prospectively investigate the benefit of using augmented reality (AR) for surgery residents learning aneurysm surgery.
Materials and methods: Eight residents were included, and divided into an AR group and a control group (4 in each group). Both groups were asked to locate an aneurysm with a blue circle on the same screenshot after their viewing of surgery videos from both AR and non-AR tests. Only the AR group was allowed to inspect and manipulate an AR holographic representation of the aneurysm in AR tests. The actual location of the aneurysm was defined by a yellow circle by an attending physician after each test. Localization deviation was determined by the distance between the blue and yellow circle.
Results: Localization deviation was lower in the AR group than in the control group in the last 2 tests (AR Test 2: 2.7 ± 1.0 mm vs. 5.8 ± 4.1 mm, p = 0.01, non-AR Test 2: 2.1 ± 0.8 mm vs. 5.9 ± 5.8 mm, p < 0.001). The mean deviation was lower in non-AR Test 2 as compared to non-AR Test 1 in both groups (AR: p < 0.001, control: p = 0.391). The localization deviation of the AR group decreased from 8.1 ± 3.8 mm in Test 2 to 2.7 ± 1.0 mm in AR Test 2 (p < 0.001).
Conclusion: AR technology provides an effective and interactive way for neurosurgery training, and shortens the learning curve for residents in aneurysm surgery.
Augmented Reality (AR) holds the potential to revolutionize surgical procedures by allowing surgeons to visualize critical structures within the patient's body. This is achieved through superimposing preoperative organ models onto the actual anatomy. Challenges arise from dynamic deformations of organs during surgery, making preoperative models inadequate for faithfully representing intraoperative anatomy. To enable reliable navigation in augmented surgery, modeling of intraoperative deformation to obtain an accurate alignment of the preoperative organ model with the intraoperative anatomy is indispensable. Despite the existence of various methods proposed to model intraoperative organ deformation, there are still few literature reviews that systematically categorize and summarize these approaches. This review aims to fill this gap by providing a comprehensive and technical-oriented overview of modeling methods for intraoperative organ deformation in augmented reality in surgery. Through a systematic search and screening process, 112 closely relevant papers were included in this review. By presenting the current status of organ deformation modeling methods and their clinical applications, this review seeks to enhance the understanding of organ deformation modeling in AR-guided surgery, and discuss the potential topics for future advancements.
A robotic system for manipulating a flexible endoscope in surgery can provide enhanced accuracy and usability compared to manual operation. However, previous studies require large-scale, complex hardware systems to implement the rotational and translational motions of the soft endoscope cable. The conventional control of the endoscope by actuating the endoscope handle also leads to undesired slack between the endoscope tip and the handle, which becomes more problematic with long endoscopes such as a colonoscope. This study proposes a compact quad-roller friction mechanism that enables rotational and translational motions triggered not from the endoscope handle but at the endoscope tip. Controlling two pairs of tilted rollers achieves both types of motion within a small space. The proposed system also introduces an unsynchronized motion strategy between the handle and tip parts to minimize the robot's motion near the patient by employing the slack positively as a control index. Experiments indicate that the proposed system achieves accurate rotational and translational motions, and the unsynchronized control method reduces the total translational motion by up to 88% compared to the previous method.
Catheter-based intervention procedures contain complex maneuvers, and they are often performed using fluoroscopic guidance assisted by 2D and 3D echocardiography viewed on a flat screen that inherently limits depth perception. Emerging mixed reality (MR) technologies, combined with advanced rendering techniques, offer potential enhancement in depth perception and navigational support. The study aims to evaluate a MR-based guidance system for the atrial septal puncture (ASP) procedure utilizing a phantom anatomical model. A novel MR-based guidance system using a modified Monte Carlo-based rendering approach for 3D echocardiographic visualization was introduced and evaluated against standard clinical 3D echocardiographic display on a flat screen. The objective was to guide the ASP procedure by facilitating catheter placement and puncture across four specific atrial septum quadrants. To assess the system's feasibility and performance, a user study involving four experienced interventional cardiologists was conducted using a phantom model. Results show that participants accurately punctured the designated quadrant in 14 out of 16 punctures using MR and 15 out of 16 punctures using the flat screen of the ultrasound machine. The geometric mean puncture time for MR was 31 s and 26 s for flat screen guidance. User experience ratings indicated MR-based guidance to be easier to navigate and locate tents of the atrial septum. The study demonstrates the feasibility of MR-guided atrial septal puncture. User experience data, particularly with respect to navigation, imply potential benefits for more complex procedures and educational purposes. The observed performance difference suggests an associated learning curve for optimal MR utilization.