Sebastian L. Fuchs, Christoph Meier, Wolfgang A. Wall, Christian J. Cyron
{"title":"An SPH framework for fluid–solid and contact interaction problems including thermo-mechanical coupling and reversible phase transitions","authors":"Sebastian L. Fuchs, Christoph Meier, Wolfgang A. Wall, Christian J. Cyron","doi":"10.1186/s40323-021-00200-w","DOIUrl":null,"url":null,"abstract":"The present work proposes an approach for fluid–solid and contact interaction problems including thermo-mechanical coupling and reversible phase transitions. The solid field is assumed to consist of several arbitrarily-shaped, undeformable but mobile rigid bodies, that are evolved in time individually and allowed to get into mechanical contact with each other. The fluid field generally consists of multiple liquid or gas phases. All fields are spatially discretized using the method of smoothed particle hydrodynamics (SPH). This approach is especially suitable in the context of continually changing interface topologies and dynamic phase transitions without the need for additional methodological and computational effort for interface tracking as compared to mesh- or grid-based methods. Proposing a concept for the parallelization of the computational framework, in particular concerning a computationally efficient evaluation of rigid body motion, is an essential part of this work. Finally, the accuracy and robustness of the proposed framework is demonstrated by several numerical examples in two and three dimensions, involving multiple rigid bodies, two-phase flow, and reversible phase transitions, with a focus on two potential application scenarios in the fields of engineering and biomechanics: powder bed fusion additive manufacturing (PBFAM) and disintegration of food boluses in the human stomach. The efficiency of the parallel computational framework is demonstrated by a strong scaling analysis.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"30 18","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Modeling and Simulation in Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40323-021-00200-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 7
Abstract
The present work proposes an approach for fluid–solid and contact interaction problems including thermo-mechanical coupling and reversible phase transitions. The solid field is assumed to consist of several arbitrarily-shaped, undeformable but mobile rigid bodies, that are evolved in time individually and allowed to get into mechanical contact with each other. The fluid field generally consists of multiple liquid or gas phases. All fields are spatially discretized using the method of smoothed particle hydrodynamics (SPH). This approach is especially suitable in the context of continually changing interface topologies and dynamic phase transitions without the need for additional methodological and computational effort for interface tracking as compared to mesh- or grid-based methods. Proposing a concept for the parallelization of the computational framework, in particular concerning a computationally efficient evaluation of rigid body motion, is an essential part of this work. Finally, the accuracy and robustness of the proposed framework is demonstrated by several numerical examples in two and three dimensions, involving multiple rigid bodies, two-phase flow, and reversible phase transitions, with a focus on two potential application scenarios in the fields of engineering and biomechanics: powder bed fusion additive manufacturing (PBFAM) and disintegration of food boluses in the human stomach. The efficiency of the parallel computational framework is demonstrated by a strong scaling analysis.
期刊介绍:
The research topics addressed by Advanced Modeling and Simulation in Engineering Sciences (AMSES) cover the vast domain of the advanced modeling and simulation of materials, processes and structures governed by the laws of mechanics. The emphasis is on advanced and innovative modeling approaches and numerical strategies. The main objective is to describe the actual physics of large mechanical systems with complicated geometries as accurately as possible using complex, highly nonlinear and coupled multiphysics and multiscale models, and then to carry out simulations with these complex models as rapidly as possible. In other words, this research revolves around efficient numerical modeling along with model verification and validation. Therefore, the corresponding papers deal with advanced modeling and simulation, efficient optimization, inverse analysis, data-driven computation and simulation-based control. These challenging issues require multidisciplinary efforts – particularly in modeling, numerical analysis and computer science – which are treated in this journal.