Wu, Yinghan, Shao, Kaixuan, Piccialli, Francesco, Mei, Gang
{"title":"Numerical modeling of the propagation process of landslide surge using physics-informed deep learning","authors":"Wu, Yinghan, Shao, Kaixuan, Piccialli, Francesco, Mei, Gang","doi":"10.1186/s40323-022-00228-6","DOIUrl":null,"url":null,"abstract":"The landslide surge is a common secondary disaster of reservoir bank landslides, which can cause more serious damage than the landslide itself in many cases. With the development of large-scale scientific and engineering computing, many new techniques have been applied to the study of hydrodynamic problems to make up for the shortcomings of traditional methods. In this paper, we use the physics-informed neural network (PINN) to simulate the propagation process of surges caused by landslides. We study different characteristics of landslide surges by changing water depth and particle density. We find that: (1) the landslide surge propagation process simulation method based on the physics-informed neural network has good applicability, and the stages of landslide surge propagation can be well presented; (2) the depth of water influences the landslide surge propagation as the amplitude of the surge increases with deeper water; (3) the particle density of water influences the landslide surge propagation as the fluctuation of the surge is more obvious with larger particle density. Our study is helpful to understand the propagation process of landslide surges more clearly and provides new ideas for the follow-up study of this kind of complex fluid–structure interaction problem.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":"30 7","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Modeling and Simulation in Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40323-022-00228-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 4
Abstract
The landslide surge is a common secondary disaster of reservoir bank landslides, which can cause more serious damage than the landslide itself in many cases. With the development of large-scale scientific and engineering computing, many new techniques have been applied to the study of hydrodynamic problems to make up for the shortcomings of traditional methods. In this paper, we use the physics-informed neural network (PINN) to simulate the propagation process of surges caused by landslides. We study different characteristics of landslide surges by changing water depth and particle density. We find that: (1) the landslide surge propagation process simulation method based on the physics-informed neural network has good applicability, and the stages of landslide surge propagation can be well presented; (2) the depth of water influences the landslide surge propagation as the amplitude of the surge increases with deeper water; (3) the particle density of water influences the landslide surge propagation as the fluctuation of the surge is more obvious with larger particle density. Our study is helpful to understand the propagation process of landslide surges more clearly and provides new ideas for the follow-up study of this kind of complex fluid–structure interaction problem.
期刊介绍:
The research topics addressed by Advanced Modeling and Simulation in Engineering Sciences (AMSES) cover the vast domain of the advanced modeling and simulation of materials, processes and structures governed by the laws of mechanics. The emphasis is on advanced and innovative modeling approaches and numerical strategies. The main objective is to describe the actual physics of large mechanical systems with complicated geometries as accurately as possible using complex, highly nonlinear and coupled multiphysics and multiscale models, and then to carry out simulations with these complex models as rapidly as possible. In other words, this research revolves around efficient numerical modeling along with model verification and validation. Therefore, the corresponding papers deal with advanced modeling and simulation, efficient optimization, inverse analysis, data-driven computation and simulation-based control. These challenging issues require multidisciplinary efforts – particularly in modeling, numerical analysis and computer science – which are treated in this journal.