A partitioned material point method and discrete element method coupling scheme

Singer, Veronika, Sautter, Klaus B., Larese, Antonia, Wüchner, Roland, Bletzinger, Kai-Uwe
{"title":"A partitioned material point method and discrete element method coupling scheme","authors":"Singer, Veronika, Sautter, Klaus B., Larese, Antonia, Wüchner, Roland, Bletzinger, Kai-Uwe","doi":"10.1186/s40323-022-00229-5","DOIUrl":null,"url":null,"abstract":"Mass-movement hazards involving fast and large soil deformation often include huge rocks or other significant obstacles increasing tremendously the risks for humans and infrastructures. Therefore, numerical investigations of such disasters are in high economic demand for prediction as well as for the design of countermeasures. Unfortunately, classical numerical approaches are not suitable for such challenging multiphysics problems. For this reason, in this work we explore the combination of the Material Point Method, able to simulate elasto-plastic continuum materials and the Discrete Element Method to accurately calculate the contact forces, in a coupled formulation. We propose a partitioned MPM-DEM coupling scheme, thus the solvers involved are treated as black-box solvers, whereas the communication of the involved sub-systems is shifted to the shared interface. This approach allows to freely choose the best suited solver for each model and to combine the advantages of both physics in a generalized manner. The examples validate the novel coupling scheme and show its applicability for the simulation of large strain flow events interacting with obstacles.","PeriodicalId":37424,"journal":{"name":"Advanced Modeling and Simulation in Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Modeling and Simulation in Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40323-022-00229-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 4

Abstract

Mass-movement hazards involving fast and large soil deformation often include huge rocks or other significant obstacles increasing tremendously the risks for humans and infrastructures. Therefore, numerical investigations of such disasters are in high economic demand for prediction as well as for the design of countermeasures. Unfortunately, classical numerical approaches are not suitable for such challenging multiphysics problems. For this reason, in this work we explore the combination of the Material Point Method, able to simulate elasto-plastic continuum materials and the Discrete Element Method to accurately calculate the contact forces, in a coupled formulation. We propose a partitioned MPM-DEM coupling scheme, thus the solvers involved are treated as black-box solvers, whereas the communication of the involved sub-systems is shifted to the shared interface. This approach allows to freely choose the best suited solver for each model and to combine the advantages of both physics in a generalized manner. The examples validate the novel coupling scheme and show its applicability for the simulation of large strain flow events interacting with obstacles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提出了分块质点法与离散元法的耦合方案
土体快速大变形的体块运动危害通常包括巨大的岩石或其他重大障碍物,极大地增加了人类和基础设施的风险。因此,这类灾害的数值研究对预测和对策设计都有很高的经济要求。不幸的是,经典的数值方法不适合这种具有挑战性的多物理场问题。因此,在这项工作中,我们探索了能够模拟弹塑性连续体材料的材料点法和精确计算接触力的离散元法的结合,在一个耦合公式中。我们提出了一种分区的MPM-DEM耦合方案,将所涉及的求解器视为黑盒求解器,而将所涉及的子系统的通信转移到共享接口。这种方法允许为每个模型自由选择最适合的求解器,并以一种广义的方式结合两种物理的优点。算例验证了该耦合方案的可行性,并表明该方案适用于大应变流与障碍物相互作用的模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Modeling and Simulation in Engineering Sciences
Advanced Modeling and Simulation in Engineering Sciences Engineering-Engineering (miscellaneous)
CiteScore
6.80
自引率
0.00%
发文量
22
审稿时长
30 weeks
期刊介绍: The research topics addressed by Advanced Modeling and Simulation in Engineering Sciences (AMSES) cover the vast domain of the advanced modeling and simulation of materials, processes and structures governed by the laws of mechanics. The emphasis is on advanced and innovative modeling approaches and numerical strategies. The main objective is to describe the actual physics of large mechanical systems with complicated geometries as accurately as possible using complex, highly nonlinear and coupled multiphysics and multiscale models, and then to carry out simulations with these complex models as rapidly as possible. In other words, this research revolves around efficient numerical modeling along with model verification and validation. Therefore, the corresponding papers deal with advanced modeling and simulation, efficient optimization, inverse analysis, data-driven computation and simulation-based control. These challenging issues require multidisciplinary efforts – particularly in modeling, numerical analysis and computer science – which are treated in this journal.
期刊最新文献
Application of graph neural networks to predict explosion-induced transient flow Role of physical structure on performance index of crossflow microchannel heat exchanger with regression analysis Enhanced prediction of thermomechanical systems using machine learning, PCA, and finite element simulation A computational two-scale approach to cancellous bone remodelling Peridynamic numerical investigation of asymmetric strain-controlled fatigue behaviour using the kinetic theory of fracture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1